Geometric-based Symbol Spotting, with Application to Symbol Retrieval in Document Image Databases

Nibal Nayef, Thomas Breuel -- University of Kaiserslautern -- Germany {nnayef, tmb}@iupr.com

Abstract

The ultimate goal of my research is the **reliable and efficient symbol retrieval** form large document image databases, in particular technical line drawings.

My approach to solve the retrieval problem has two main complementary directions:

First, the recognition of the symbols, both isolated recognition and in-context spotting.

Second, the off-line content analysis of line drawings, which makes us able to index the regions inside the drawings for later fast retrieval.

My Ph.D. Work - Overview Effect of different parameters Justify the work, compare to other methods Build a symbol library Fast matching and indexing Identify regions of interest: Segmentation via statistical grouping Identify patterns of interest: Clustering of repeating patterns Preprocessing Adaptive noise removal Features extraction

All my methods have been applied on standard datasets and have achieved significantly better results for spotting than the state-of-the-art approaches.

Matching, Matching in-context Post-processing Penalizing non-matched features

doneon going

FACHBEREICH

INFORMATIK

I. Symbol Recognition and Spotting

- A) Adaptive preprocessing [1,2]
- Automatic adaptive noise removal
- Features: pixels or line segments

B) Recognition and in-context spotting [1,3]

- Geometric matching under similarity transformations
- Branch-and-bound Search in the transformation space, align a maximal subset of features between

II. Symbol Retrieval by Content Analysis

What does it do ?

From a collection of line drawings:

It finds – in each drawing – meaningful patterns

Experiments & Results

Dataset: 300 images of complete floor plans, Public [8], used in GREC'11 symbol spotting contest [9].
 Metrics: Clustering: Recall & Precision, Grouping: Recall for non-missing symbols, Precision for the relevant found patterns.

	Ground Truth	Results			
No. of Patterns	12513	13780			
No. of Clusters	25	30			
Grouping Evaluation (offline)					
Covered Symbols	Recall (# symbols = 6987)	Precision (# patterns = 13780)			
	98.8%	97.31%			
Avg. time per image		22.75 sec.			
Clustering Evaluation (offline)					
All Clusters*	Avg. Recall	Avg. Precision			
	95%	96.5%			
Avg. time per forming 1 cluster		45 min.			

*Retrieval: depends on the # clusters not on the # images.

two images

Experiments & Results

Isolated Recognition*

using a grouping algorithm based on convex groups [5,6]
 the patterns are symbols' parts up to complete symbols

By Clustering the repeating patterns [7]using geometric matching [3]

Problems & Solutions in I, II

Similar shapes

Penalizing the non-matched features

inside the matching region

Take Home Messages

1) Symbol retrieval in large databases is made practical. With very high accuracy.

- 2) Segmenting symbols patterns from the background has converted spotting to isolated recognition. Using statistically justified methods .
- **3)** Geometric matching is optimal for matching shapes under similarity transformations. Based on well founded theories.

4) Finding repeating patterns in images leads to finding the meaningful objects parts.

GREC 05 datas	et (6000 ima	ges, all noise mo	dels, all trans	formations)	
Overall accuracy			90.13		
Subset of GRE	S ^e C'11 training 12 queries ir	ymbol Spotting* g set (14 queries n 20 architectura	in 20 electrica drawings)	l drawings,	
Data	Noise	# of instances of queried symbols	Average Recall	Average Precision	
architectural	random	366	98.1	98.9	
	•			04.1	

methods are in [1,5]

Participated in **GREC'11 Contest [9]** for symbol recognition and symbol spotting (all tests)

It creates a symbol library from the clusters' representatives [7]: • a very compact representation of the dataset

The symbol library will be used for fast retrieval [future]
simply match a query symbol to the small set of symbols in the library and retrieve all matches from the matching cluster Creates a compact representation of a dataset.

References

[1] N. Nayef and T. M. Breuel, "On the Use of Geometric Matching for Both: Isolated Symbol Recognition and Symbol Spotting", GREC (long paper), 2011.

[2] J. Zhang, W. Zhang, and L. Wenyin, "Adaptive noise reduction for engineering drawings based on primitives and noise assessment", in GREC, 2005, pp. 140–150.

[3] T. M. Breuel, "Implementation techniques for geometric branch-and-bound matching methods," CVIU, vol. 90, no. 3, pp. 258–294, 2003.

[4] N. Nayef and T. M. Breuel, "Graphical symbol retrieval using a branch and bound algorithm," in ICIP, 2010, pp. 2153–2156.

[5] N. Nayef and T. M. Breuel, "Statistical grouping for segmenting symbols parts from line drawings, with application to symbol spotting," accepted in ICDAR, 2011.

[6] D. W. Jacobs, "Robust and efficient detection of salient convex groups," PAMI, vol. 18, no. 1, pp. 23–37, 1996.

[7] N. Nayef and T. M. Breuel, "Building a Symbol Library From Technical Drawings By Identifying Repeating Patterns", GREC, 2011.

[8] http://mathieu.delalandre.free.fr/projects/sesyd/index.html

[9] http://iapr-tc10.univ-lr.fr/index.php/symbol-contest-2011

Contact: Nibal Nayef (nnayef@iupr.com)

https://sites.google.com/a/iupr.com/nayef