
On-Line Handwritten Documents Segmentation

J. Blanchard, T. Artières
LIP6, Université Paris 6,
8 rue du capitaine Scott

75015, France
Julien.Blanchard@poleia.lip6.fr, Thierry.Artières@lip6.fr

Abstract

This work concerns note-taking applications; it deals
with poorly structured on-line handwritten documents
segmentation such as pages of handwritten notes. We
extend an existing system based on Probabilistic Feature
Grammars. The probabilistic nature of this system allows
considering lots of segmentation hypothesis, which is an
advantage for poorly structured documents processing,
but it goes with important algorithmic complexity. Our
improvements concern the handling of this complexity
using genetic algorithms, the definition of performance
measurements that are adapted to the segmentation of
on-line documents, and the evaluation of this
segmentation approach on a collection of documents of
various qualities.

Keywords: Segmentation, Poorly structured
documents, Probabilistic grammars, Genetic algorithms

1. Introduction

This work deals with electronic note-taking
applications using a pen based interface. Some of these
applications use the pen as an input device only and
input signals are immediately recognized and interpreted.
Some other applications consider the electronic ink as a
new kind of format and allow producing and editing on-
line handwritten documents. In this context, a number of
tools are needed to manipulate and process such on-line
handwritten documents, segmentation tools are among
the first ones.

A number of techniques have been developed for off-
line documents segmentation such as newspapers or table
of contents [4], [6], and [7]. However, since these
methods have been designed for a particular class of
rather uniform documents, these rely on global features
computed on the whole document and are particularly
well adapted to printed documents with strong
regularities (e.g. uniform line slope or the inter-line size).

A few segmentation methods have been proposed in
the last few years to handle handwritten documents
corresponding to note-taking applications (on-line and

off-line). First methods were based on histogram
projections for detecting lines, then to locate words or
word groups [5], [8]. Again, those methods were based
on rather strong hypothesis about document regularity,
particularly for the line slope or the inter-line size.

More recent works [3], [9] dealing with few kinds of
documents try to give-up too strict constraints and use
contextual information to achieve a local treatment of
signal. The system presented in [1] was our first try to
answer the two sides of the problem, by being more
flexible about features regularity and more generic about
type of documents. Formalism chosen is based on
Probabilistic Features Grammars (PFGs) [2], which were
adapted to two-dimensional datasets. Principal interest of
those grammars is that they permit to simply take into
account contextual information, which is very important
in our case, because poorly structured documents are
often ambiguous.

The paper is organized as follows. We first briefly

review the core of the method and describe PFG
formalism. Then, we detail our main contributions, in
particular the use of beam search and of genetic
algorithms to break algorithmic complexity. Next, we
present experimental results. To do this we define a few
performance criteria that are adapted to the case of on-
line documents segmentation task. We compare our
approach to a more classical method inspired by the
Docstrum method [7] on a handwritten documents corpus
that we collected in our lab and that consists of both
poorly and highly structured documents.

2. Using PFGs for handwritten documents
analysis

In this section, we briefly describe the application of
Probabilistic Feature Grammars to on-line documents
segmentation, more details concerning §1 and §2 may be
found in [1]. Our new contributions to this system
concern mainly §2.3 and §2.4. In the following, we first
describe a grammar for simple texts then we discuss of
the probabilistic laws associated to rule production. Next
we discuss the training step and present the segmentation

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

algorithm and the techniques used to break down its
algorithmic complexity.
2.1. A grammar for simple texts

The grammar we use here is rather simple but it
allows us comparing our approach to other segmentation
techniques. However, our system is not limited to such
grammars and dealing with a new kind of documents
requires a limited work: the definition of the grammar
and of rules production probabilities. The grammar used
here is defined by the five rules:

1) Page Page [Above] Paragraph
2) Page [Up Border Above] Paragraph
3) Paragraph Paragraph [Above] Line
4) Paragraph Line
5) Line Line [On-Right-Of] word
6) Line [Left Border On-Right-Of] word

According to this grammar, a document is a series of

paragraphs. Similarly, a paragraph is a succession of
lines, and a line is a succession of words (we call word a
handwriting signal between a pen-down and a pen-up
moves). Note that there is a simple hierarchy in the terms
of the grammars. Words are aggregated to form lines that
are aggregated to form paragraphs. We will talk of
composite term to express this idea: words are composite
terms of lines, which themselves are composite terms of
paragraphs.

As one may sees, there are some relative spatial
operators in these rules. For example a line may be built
from an existing line by adding a word that is [On the
right] of this line. There are also absolute spatial
operators. For example, the second rule that allows
building lines is the initialization rule: According to this
rule and to the operator [Left Border on the right], a line
may begin with a word that has nothing on its left.
Spatial operators are used at different levels. First they
are used as bottom-up operators that allow limiting the
number of rules to be activated. For example, not all
initialization lines (consisting of any word of a
document) are built, only those corresponding to words
that are reasonable candidates (i.e. with almost nothing
on its left) are built. Second, these operators condition
the nature of the probability law for activating rules. For
example, the probability that rule 3 be activated, from an
existing paragraph P and an existing line L, is defined as
a function of relative positions of P and L (P being above
L gives higher probability). Some geometric algorithms,
based on convex hulls of entities (e.g. P and L), are used
to define how much an entity is above, below, on the
right, on the left, of another entity.

2.2. Probability of rule production
PFGs allow integrating contextual informations

through propagation of features associated to derived
entities. In PFGs, rules are of the form:

() () ()ggg cccCbbbBaaaA ,...,,,,...,,,...,, 212121 ==→=

Where A, B and C are terms (terminals or nonterminals),
()gaaa ,...,, 21 , ()gbbb ,...,, 21 and ()gccc ,...,, 21 are

feature vectors (with g features) associated to the terms.
In our case terms may be paragraphs, lines and words.
Such grammars may be viewed as generative stochastic
models.

Let note C(X) the feature vector associated to a term
X. The probability to activate rule CBA ,→ , then to
produce B and C from A, is given by:

))(/)(),((),(ACCCBCPCBAP =→
Such probabilities are computed based on the features

of the terms and we considered three kinds of features for
a particular term.

- its own features (height, width, slope...), we note
f1(X).

- the mean features of composite terms, f2(X).
- features describing spatial relationships between

composite terms, f3(X).
Hence, a feature vector for a term X is given by:

C(X)=(f1(X), f2(X), f3(X)). For example, a paragraph has
its own features (height, width and slope), but is also
characterized by mean features of its lines (mean slope,
mean width...) and by features describing spatial
relationships between its lines (mean distance between
two successive lines).

Probabilistic laws for rule activation are defined on
such feature vectors as discussed in [1] where features are
assumed independent. For example to add a line to a
paragraph with the third rule, distance between this line
and the last line of paragraph must be close to the mean
inter-line feature of the paragraph, the line slope must be
closed to the mean line slope of the paragraph etc.

2.3. Parameters learning

Since we use an independence assumption between

features, we only discuss here the learning of parameters
for a probabilistic law for one particular feature. All these
laws (for each feature) are assumed Gaussian. In [1],
parameters of these laws were empirically estimated on a
collection of documents. In this study, we tried to
improve the system with a statistical learning of these
parameters. Learning is based on a collection of labeled
documents; a labeled document is a document whose
parsing is known. Then, for all rules, we may compute
means and variance of term features.

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

2.4. Segmentation: Optimal derivation tree

Page segmentation produces a derivation tree. Each

tree node corresponds to a term t (with its features) and a
rule number n, where term t was derived with rule n
based on children nodes terms. Page segmentation is
computed with a dynamic programming algorithm that
finds optimal derivation tree, i.e. derivation tree with
maximal probability. We used originally an algorithm
that was close to the one proposed by [10] but we moved
towards a bottom-up algorithm since it is much easier to
integrate beam search strategy or optimization heuristics
in this kind of algorithms.

Our algorithm processes level by level, beginning by
building all possible lines from all the words in the page,
then building all possible paragraphs from the lines
found at the first step, etc. For each level (e.g. lines), the
algorithm builds iteratively terms in the same way that in
dynamic programming like Viterbi. For example, to build
lines, first all beginning lines are built using rule 5, then
using iteratively rule 4, all these lines may be extended
until there is no more words to aggregate to existing
lines.

Unfortunately, serious algorithmic complexity appears
since the number of hypotheses to consider quickly
becomes huge with the size of the document, recalling
that the segmentation algorithm consists in finding
simultaneously the reading order of words and their
aggregation in structured terms (lines, paragraphs). The
consequence of this two dimensional search is a dramatic
combinatorial explosion. Even with bottom-up geometric
operators as described in §2.1, such an algorithm may
deal with a page of a maximum of 10 to 20 “words”. For
example, for a document with i lines of n strokes, each
stroke having k neighbors, complexity is O(i*kn).

To deal with these problems, we had to improve our
dynamic programming algorithm. We firstly
implemented beam search strategies, and secondly
integrated a genetic algorithm in the parsing algorithm.

Beam search (i.e. pruning) strategy is used to give up
as soon as possible all hypotheses with low probabilities.
However, the problem in our case is that we must prune
terms that do not correspond to the same number of
words and that do not include all same words, so that
their likelihoods are very difficult to compare directly.
For example two lines, the first one of 5 words and the
second one of 8 words, may share one same word. Ideally
we would like to remove one of these hypotheses but the
scores for the two lines may be incomparable.

We identified a few cases where beams could be used
easier, we detail two cases now. The first case consists in
the comparison of terms very similar, for example all
new lines built from an existing line and different words

through rule 4. A pruning may be done within these
terms; terms with lowest probabilities are pruned. We use
another beam function when the decoding step of a level
is finished, looking at reasonable terms. It is interesting
here to take into account the frequency of words in all
derived terms. If a particular word appears in only one
line l, then not only line l must be kept, but all lines
including the other words included in l may be pruned.

Such beam pruning strategies help resolve partially
the combinatorial problems but are not efficient enough
to deal with realistic documents. Thus, we decided to add
another pruning strategy, of a different kind, at the end of
each level (line, paragraph, etc.) to prune more deeply
the hypotheses. When the processing of a level is finished
(e.g. all possible lines have been derived), and before
going to the next level, we try to prune again in order to
keep sets of terms that are consistent in the next level. A
consistent set of lines stands for a set of lines that cover a
maximum of words of the document and that do not
include the same words (null intersection). The idea of
the pruning here is to keep terms belonging to consistent
sets only. Thus we use a genetic algorithm to select
entities collections that better fit to our partitioning
condition, it is a classical suboptimal technique.

The initial population is a collection of coherent terms
sets randomly found. Each individual is a coherent set of
terms. We use the three classical fundamentals
operations, crossing, mutation and selection. To cross
two sets of terms, we compute a new consistent set using
randomly chosen terms from the two sets. Mutation
consists in replacing one of entities by another randomly
elected from all possible. Last, the fitness function is the
percentage of words found.

In order to investigate the efficiency of such a genetic
algorithm, we measured at each level the percentage of
right terms that were kept and of wrong terms that were
deleted, table 1 reports these results. One can see that
about 99% of right lines are kept while 76% of wrong
lines are pruned, this means that very few right lines
were deleted. Results at the paragraph level are similar
(respectively 95% and 84%). The main result of this
pruning strategy lies in the size of the documents that our
system may handle efficiently now. Thanks to this, we
may deal now with normal size documents consisting of
hundreds of words, without loose in performance.

Right lines
kept

Wrong
lines

deleted

Right
paragraphs

kept

Wrong
paragraphs

deleted

99% 76% 95% 84%

Table 1. Genetic algorithm efficiency.

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

3. Experimental results
3.1. Database of on-line handwritten documents

We collected, in our laboratory (LIP6), a database of

on-line handwritten notes that we labeled manually into
lines and paragraphs. Documents were written by a few
writers, on a tablet and without any constraints. They
consist in up 3 to 30 lines, each line consists in 2 to 20
"words". Documents are divided into two categories (see
Figure 1). The first category is a set of "homogeneous"
pages, which can be letters, note taking, etc. These
homogeneous documents have regular global features, an
almost uniform character size, line slope, etc. Documents
of the second category are "heterogeneous" pages like
drafts or "post-it" with much more varying features.

Experimental results were computed on a database of
56 documents collection, half are homogeneous, half are
heterogeneous.

a)

b)

Figure 1. Samples of “heterogeneous” document (a)
and “homogeneous” document (b).

3.2. Performance measurement

Since the segmentation result is a parse tree, we might

use a tree to tree distance to evaluate the performance of
our segmentation procedure. However, such a distance

may not be the best performance measure since two trees
with very different structures could represent indeed
similar segmentations. We rather chose to define
performance criteria that are adapted to on-line
documents (for which the reading order is important),
and that allow evaluating the system behavior at different
levels. To deal with on-line documents, we define criteria
inspired from the edit-distance that take into account the
sequential information. To investigate what is going on
at different levels, we defined criteria at the line level and
at the paragraph level. We begin with line-based criteria.

To estimate line detection performances we begin to
pair off all discovered lines with real (i.e. labeled) lines.
Then, we compute two criteria, L1 and L2. L1 is a
between sets distance, it is defined as the percentage of
real words that belong to the discovered line. L2 takes
into account the reading order. It is the edit-distance
(lines are considered as sequences of words) between the
real line and the discovered one. We compute the
percentage of elementary operations (numbers of
insertions, deletions and substitutions) needed to
transform the real line into the discovered line.

At the paragraph level, we pair off the real lines and
discovered lines (as found in line level) and then we do
similarly to pair discovered and real paragraphs. Then
we compute the edit distance between discovered
paragraphs and real paragraphs, we note this criterion
P1. It corresponds to the system ability to aggregate lines
into correct paragraphs. Thus, even if lines are not
perfectly detected, P1 may be high, provided lines are
well gathered into paragraphs. Finally, at the page level,
we use two criteria (D1 and D2). D1 is computed after
lines have been paired off, with the edit distance between
the real document and the discovered ones, where these
documents are seen as sequences of lines. The second
criterion D2 is an edit distance again, but it compares
two documents represented as sequences of paragraphs.

3.3. Reference method

We compare in the following our approach with a

reference method. We did not find any method dealing
with on-line handwritten documents segmentation that
was enough described in the literature. Thus, we chose to
implement an off-line method which is flexible enough to
be adapted to heterogeneous documents, the Docstrum
method [7]. This technique is not based on orientation or
line slope and does not require global knowledge about
characters size or inter-line space, at the opposite of other
classical approaches using histograms or Hough
transforms.

Docstrum is based on terms partitioning by the k
nearest neighbors algorithm. Segmentation is "bottom-

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

up", i.e. one considers first low level elements to build
words, lines and then blocks. Orientation, policy size,
space between lines are estimated from nearest
neighbors’ angle and distance distributions. Thus, the
method we implemented is inspired of Docstrum and was
adapted to on-line documents.

3.4. Results

We present in this section experimental results obtained
by both our system and the reference method.

Complete
database

Homogeneous
documents

Heterogeneous
documents %

Docst PFG Docst PFG Docst PFG

L1 11.8 3.8 3.4 3.9 22.5 3.4

L2 22.7 13.1 6.5 6.9 37.0 15.7

P1 15.3 2.1 1.9 2.6 22.8 5.4

D1 29.4 25.5 18.5 20.7 36.1 26.2

D2 15.3 15.2 10.6 19.4 15.0 9.0

Table 2. Error rate comparison between our approach
and a method inspired by the Docstrum for different
categories of documents, according to the criteria
defined in §3.2.

Table 2 shows the comparison between our adaptation
of the Docstrum algorithm and our PFG-based method.
Learning of laws parameters was made by cross-
validation. We computed 56 experiments taking for each
55 learning documents and one test document. Results
from table 2 are average on the 56 experiments. For
homogeneous documents, both methods perform well and
similarly, about 3.5% error rate for criterion L1. Results
are still good when considering reading order for line
detection and for lines aggregation into paragraphs.
Error rates are however higher for criteria D1 and D2
which concern document level, indicating either sub-
segmentation or over-segmentation of pages into
paragraphs. For heterogeneous documents, without well
defined structure, results are naturally worse but PFG
exhibit higher robustness than the Docstrum based
methods, Docstrum based method is not efficient in any
case here with for example 22% error rate for criteria L1.

We can see that PFG on heterogeneous documents
sometimes provide better rates than PFG on
homogeneous documents (L1, D2). In fact, sometimes

some features of homogeneous documents can mistake
PFG’s. For example in Figure 2 d), document is an
homogeneous document but PFGs don’t find correctly
last paragraph because last line doesn’t have same
features that other lines in second paragraph.

a) Segmentation of an heterogeneous document with 3
paragraphs by Docstrum. The second paragraph
contains the first line of the third real paragraph.

b) Segmentation of the same document that in a) by
PFGs.

Line 1

Line 2

§ 1

§ 2

§ 3

§ 1

§ 2

§ 3

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

c) Segmentation of an homogeneous document with 2
paragraphs by Docstrum. Three paragraphs are found,
the last one corresponds to the end of the last line.

d) Segmentation of the same document that in c) by
PFGs. Again, three paragraphs are found but the last
one is more understandable and consists in the whole
last line which is longer than other lines in the same
paragraph.

Figure 2: Segmentations samples

4. Conclusion

The system we presented in this paper is based on an
extension of a probabilistic approach for on line
handwritten documents segmentation. This method,
based on Probabilistic Features Grammars owns some
interesting features, it takes context into account and its
probabilistic nature allow considering multiple
hypotheses. However, those advantages come with a
serious algorithmic complexity. We dealt with the huge
combinatorial complexity of the task by introducing beam
search strategy and by interfacing the parsing algorithm
with a genetic algorithm. This genetic algorithm aims at
discovering globally consistent sets of terms (e.g. lines)
that cover a whole document. Thanks to these
improvements, our system may now efficiently deal with
standard documents of hundreds of words. We evaluated
our method on a home made database containing

documents of different qualities. To do this, we defined
performances criteria that include reading order
information and are thus more adapted to on-line
handwritten documents. We validated our work
confronting our system to a reference method we adapted
from a classical approach of off-line documents
segmentation. These preliminary experimental results are
promising and show that our system behave well for all
kinds of documents while a more classical technique
seem more adapted to homogeneous documents only.

5. References

[1] N. Gauthier, T. Artieres, “Poorly Structured
Handwritten Document Segmentation Using Probabilistic
Feature Grammars”, Document Layout Interpretation and
its Applications, Workshop associated to ICDAR, 2003,
pp 375-384.

[2] J. Goodman, “Probabilistic feature grammars”,
International Workshop on Parsing Technologies, 1997,
pp 237-264.

[3] K. Jain, A. Namboodiri, J. Subrahmonia, “Structure
in on-line documents”, ICDAR, 2001, pp 844-848.

[4] K. Kise, A. Sato, M. Iwata, “Segmentation of page
images using the area Voronoi diagram”, Computer
Vision and Image Understanding, 70, 1998, pp. 370-
382.

[5] U. Marti, H. Bunke, “Text line segmentation and
word recognition in a system for general writer
independent handwriting recognition”, ICDAR, 2001, pp
159-163.

[6] G. Nagy, S. Seth, “Hierarchical representation of
optically scanned documents”, ICPR, 1984, pp 347-349.

[7] L. O'Gorman, “The document spectrum for page
layout analysis”, IEEE Trans. PAMI, Vol. 15, 1993, pp.
1162-1173.
[8] E. Ratzlaff, “Inter-line distance estimation and text
line extraction for unconstrained online handwriting”,
IWFHR, 2000, pp 33-42.
[9] M. Shilman, Z. Wei, S. Raghupathy, P. Simard, D.
Jones, “Discerning Structure from Freeform Handwritten
Notes”, ICDAR, Vol. 1, 2003, pp 60-65.

[10] A. Stolcke, An Efficient Probabilistic “Context-Free
Parsing Algorithm that Computes Prefix Probabilities”,
Computational Linguistics, Vol. 21, No. 2, 1995, pp.
165--201.

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

