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Abstract 
 

This work concerns note-taking applications; it deals 
with poorly structured on-line handwritten documents 
segmentation such as pages of handwritten notes. We 
extend an existing system based on Probabilistic Feature 
Grammars. The probabilistic nature of this system allows 
considering lots of segmentation hypothesis, which is an 
advantage for poorly structured documents processing, 
but it goes with important algorithmic complexity. Our 
improvements concern the handling of this complexity 
using genetic algorithms, the definition of performance 
measurements that are adapted to the segmentation of 
on-line documents, and the evaluation of this 
segmentation approach on a collection of documents of 
various qualities. 

Keywords: Segmentation, Poorly structured 
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1. Introduction 
 

This work deals with electronic note-taking 
applications using a pen based interface. Some of these 
applications use the pen as an input device only and 
input signals are immediately recognized and interpreted. 
Some other applications consider the electronic ink as a 
new kind of format and allow producing and editing on-
line handwritten documents. In this context, a number of 
tools are needed to manipulate and process such on-line 
handwritten documents, segmentation tools are among 
the first ones.  

A number of techniques have been developed for off-
line documents segmentation such as newspapers or table 
of contents [4], [6], and [7]. However, since these 
methods have been designed for a particular class of 
rather uniform documents, these rely on global features 
computed on the whole document and are particularly 
well adapted to printed documents with strong 
regularities (e.g. uniform line slope or the inter-line size).  

A few segmentation methods have been proposed in 
the last few years to handle handwritten documents 
corresponding to note-taking applications (on-line and 

off-line). First methods were based on histogram 
projections for detecting lines, then to locate words or 
word groups [5], [8]. Again, those methods were based 
on rather strong hypothesis about document regularity, 
particularly for the line slope or the inter-line size.  

More recent works [3], [9] dealing with few kinds of 
documents try to give-up too strict constraints and use 
contextual information to achieve a local treatment of 
signal. The system presented in [1] was our first try to 
answer the two sides of the problem, by being more 
flexible about features regularity and more generic about 
type of documents. Formalism chosen is based on 
Probabilistic Features Grammars (PFGs) [2], which were 
adapted to two-dimensional datasets. Principal interest of 
those grammars is that they permit to simply take into 
account contextual information, which is very important 
in our case, because poorly structured documents are 
often ambiguous.  

 
The paper is organized as follows. We first briefly 

review the core of the method and describe PFG 
formalism. Then, we detail our main contributions, in 
particular the use of beam search and of genetic 
algorithms to break algorithmic complexity. Next, we 
present experimental results. To do this we define a few 
performance criteria that are adapted to the case of on-
line documents segmentation task. We compare our 
approach to a more classical method inspired by the 
Docstrum method [7] on a handwritten documents corpus 
that we collected in our lab and that consists of both 
poorly and highly structured documents. 
 
2. Using PFGs for handwritten documents 
analysis 
 

In this section, we briefly describe the application of 
Probabilistic Feature Grammars to on-line documents 
segmentation, more details concerning §1 and §2 may be 
found in [1]. Our new contributions to this system 
concern mainly §2.3 and §2.4. In the following, we first 
describe a grammar for simple texts then we discuss of 
the probabilistic laws associated to rule production. Next 
we discuss the training step and present the segmentation 
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algorithm and the techniques used to break down its 
algorithmic complexity. 
2.1. A grammar for simple texts 
 

The grammar we use here is rather simple but it 
allows us comparing our approach to other segmentation 
techniques. However, our system is not limited to such 
grammars and dealing with a new kind of documents 
requires a limited work: the definition of the grammar 
and of rules production probabilities. The grammar used 
here is defined by the five rules: 

 
1) Page  Page [Above] Paragraph 
2) Page  [Up Border Above] Paragraph 
3) Paragraph  Paragraph [Above] Line  
4) Paragraph  Line 
5) Line  Line [On-Right-Of] word 
6) Line  [Left Border On-Right-Of] word 
 
According to this grammar, a document is a series of 

paragraphs. Similarly, a paragraph is a succession of 
lines, and a line is a succession of words (we call word a 
handwriting signal between a pen-down and a pen-up 
moves). Note that there is a simple hierarchy in the terms 
of the grammars. Words are aggregated to form lines that 
are aggregated to form paragraphs. We will talk of 
composite term to express this idea: words are composite 
terms of lines, which themselves are composite terms of 
paragraphs.   

As one may sees, there are some relative spatial 
operators in these rules. For example a line may be built 
from an existing line by adding a word that is [On the 
right] of this line. There are also absolute spatial 
operators. For example, the second rule that allows 
building lines is the initialization rule: According to this 
rule and to the operator [Left Border on the right], a line 
may begin with a word that has nothing on its left. 
Spatial operators are used at different levels. First they 
are used as bottom-up operators that allow limiting the 
number of rules to be activated. For example, not all 
initialization lines (consisting of any word of a 
document) are built, only those corresponding to words 
that are reasonable candidates (i.e. with almost nothing 
on its left) are built. Second, these operators condition 
the nature of the probability law for activating rules. For 
example, the probability that rule 3 be activated, from an 
existing paragraph P and an existing line L, is defined as 
a function of relative positions of P and L (P being above 
L gives higher probability). Some geometric algorithms, 
based on convex hulls of entities (e.g. P and L), are used 
to define how much an entity is above, below, on the 
right, on the left, of another entity. 
 

2.2. Probability of rule production  
PFGs allow integrating contextual informations 

through propagation of features associated to derived 
entities. In PFGs, rules are of the form: 

( ) ( ) ( )ggg cccCbbbBaaaA ,...,,,,...,,,...,, 212121 ==→=  

Where A, B and C are terms (terminals or nonterminals), 
( )gaaa ,...,, 21 , ( )gbbb ,...,, 21  and ( )gccc ,...,, 21  are 

feature vectors (with g features) associated to the terms. 
In our case terms may be paragraphs, lines and words. 
Such grammars may be viewed as generative stochastic 
models.  

Let note C(X) the feature vector associated to a term 
X. The probability to activate rule CBA ,→ , then to 
produce B and C from A, is given by: 

))(/)(),((),( ACCCBCPCBAP =→  
Such probabilities are computed based on the features 

of the terms and we considered three kinds of features for 
a particular term.   

- its own features (height, width, slope...), we note 
f1(X). 

- the mean features of composite terms, f2(X). 
- features describing spatial relationships between 

composite terms, f3(X). 
Hence, a feature vector for a term X is given by: 

C(X)=(f1(X), f2(X), f3(X)). For example, a paragraph has 
its own features (height, width and slope), but is also 
characterized by mean features of its lines (mean slope, 
mean width...) and by features describing spatial 
relationships between its lines (mean distance between 
two successive lines).  

Probabilistic laws for rule activation are defined on 
such feature vectors as discussed in [1] where features are 
assumed independent. For example to add a line to a 
paragraph with the third rule, distance between this line 
and the last line of paragraph must be close to the mean 
inter-line feature of the paragraph, the line slope must be 
closed to the mean line slope of the paragraph etc. 
 
2.3. Parameters learning 

 
Since we use an independence assumption between 

features, we only discuss here the learning of parameters 
for a probabilistic law for one particular feature. All these 
laws (for each feature) are assumed Gaussian. In [1], 
parameters of these laws were empirically estimated on a 
collection of documents. In this study, we tried to 
improve the system with a statistical learning of these 
parameters. Learning is based on a collection of labeled 
documents; a labeled document is a document whose 
parsing is known. Then, for all rules, we may compute 
means and variance of term features. 
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2.4. Segmentation: Optimal derivation tree 
 
Page segmentation produces a derivation tree. Each 

tree node corresponds to a term t (with its features) and a 
rule number n, where term t was derived with rule n 
based on children nodes terms. Page segmentation is 
computed with a dynamic programming algorithm that 
finds optimal derivation tree, i.e. derivation tree with 
maximal probability. We used originally an algorithm 
that was close to the one proposed by [10] but we moved 
towards a bottom-up algorithm since it is much easier to 
integrate beam search strategy or optimization heuristics 
in this kind of algorithms.  

Our algorithm processes level by level, beginning by 
building all possible lines from all the words in the page, 
then building all possible paragraphs from the lines 
found at the first step, etc. For each level (e.g. lines), the 
algorithm builds iteratively terms in the same way that in 
dynamic programming like Viterbi. For example, to build 
lines, first all beginning lines are built using rule 5, then 
using iteratively rule 4, all these lines may be extended 
until there is no more words to aggregate to existing 
lines.  

Unfortunately, serious algorithmic complexity appears 
since the number of hypotheses to consider quickly 
becomes huge with the size of the document, recalling 
that the segmentation algorithm consists in finding 
simultaneously the reading order of words and their 
aggregation in structured terms (lines, paragraphs). The 
consequence of this two dimensional search is a dramatic 
combinatorial explosion. Even with bottom-up geometric 
operators as described in §2.1, such an algorithm may 
deal with a page of a maximum of 10 to 20 “words”. For 
example, for a document with i lines of n strokes, each 
stroke having k neighbors, complexity is O(i*kn). 

To deal with these problems, we had to improve our 
dynamic programming algorithm. We firstly 
implemented beam search strategies, and secondly 
integrated a genetic algorithm in the parsing algorithm.  

Beam search (i.e. pruning) strategy is used to give up 
as soon as possible all hypotheses with low probabilities. 
However, the problem in our case is that we must prune 
terms that do not correspond to the same number of 
words and that do not include all same words, so that 
their likelihoods are very difficult to compare directly. 
For example two lines, the first one of 5 words and the 
second one of 8 words, may share one same word. Ideally 
we would like to remove one of these hypotheses but the 
scores for the two lines may be incomparable. 

We identified a few cases where beams could be used 
easier, we detail two cases now. The first case consists in 
the comparison of terms very similar, for example all 
new lines built from an existing line and different words 

through rule 4. A pruning may be done within these 
terms; terms with lowest probabilities are pruned. We use 
another beam function when the decoding step of a level 
is finished, looking at reasonable terms. It is interesting 
here to take into account the frequency of words in all 
derived terms. If a particular word appears in only one 
line l, then not only line l must be kept, but all lines 
including the other words included in l may be pruned.  

Such beam pruning strategies help resolve partially 
the combinatorial problems but are not efficient enough 
to deal with realistic documents. Thus, we decided to add 
another pruning strategy, of a different kind, at the end of 
each level (line, paragraph, etc.) to prune more deeply 
the hypotheses. When the processing of a level is finished 
(e.g. all possible lines have been derived), and before 
going to the next level, we try to prune again in order to 
keep sets of terms that are consistent in the next level. A 
consistent set of lines stands for a set of lines that cover a 
maximum of words of the document and that do not 
include the same words (null intersection). The idea of 
the pruning here is to keep terms belonging to consistent 
sets only. Thus we use a genetic algorithm to select 
entities collections that better fit to our partitioning 
condition, it is a classical suboptimal technique. 

The initial population is a collection of coherent terms 
sets randomly found. Each individual is a coherent set of 
terms. We use the three classical fundamentals 
operations, crossing, mutation and selection. To cross 
two sets of terms, we compute a new consistent set using 
randomly chosen terms from the two sets. Mutation 
consists in replacing one of entities by another randomly 
elected from all possible. Last, the fitness function is the 
percentage of words found. 

In order to investigate the efficiency of such a genetic 
algorithm, we measured at each level the percentage of 
right terms that were kept and of wrong terms that were 
deleted, table 1 reports these results. One can see that 
about 99% of right lines are kept while 76% of wrong 
lines are pruned, this means that very few right lines 
were deleted. Results at the paragraph level are similar 
(respectively 95% and 84%). The main result of this 
pruning strategy lies in the size of the documents that our 
system may handle efficiently now. Thanks to this, we 
may deal now with normal size documents consisting of 
hundreds of words, without loose in performance.  

 

Right lines 
kept 

Wrong 
lines 

deleted 

Right 
paragraphs 

kept 

Wrong 
paragraphs 

deleted 

99% 76% 95% 84% 

Table 1. Genetic algorithm efficiency. 
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3. Experimental results 
3.1. Database of on-line handwritten documents 

 
We collected, in our laboratory (LIP6), a database of 

on-line handwritten notes that we labeled manually into 
lines and paragraphs. Documents were written by a few 
writers, on a tablet and without any constraints. They 
consist in up 3 to 30 lines, each line consists in 2 to 20 
"words". Documents are divided into two categories (see 
Figure 1). The first category is a set of "homogeneous" 
pages, which can be letters, note taking, etc. These 
homogeneous documents have regular global features, an 
almost uniform character size, line slope, etc. Documents 
of the second category are "heterogeneous" pages like 
drafts or "post-it" with much more varying features. 

Experimental results were computed on a database of 
56 documents collection, half are homogeneous, half are 
heterogeneous.    

 

a) 

 
b) 

Figure 1. Samples of “heterogeneous” document (a) 
and “homogeneous” document (b). 
 
3.2. Performance measurement 

 
Since the segmentation result is a parse tree, we might 

use a tree to tree distance to evaluate the performance of 
our segmentation procedure. However, such a distance 

may not be the best performance measure since two trees 
with very different structures could represent indeed 
similar segmentations. We rather chose to define 
performance criteria that are adapted to on-line 
documents (for which the reading order is important), 
and that allow evaluating the system behavior at different 
levels. To deal with on-line documents, we define criteria 
inspired from the edit-distance that take into account the 
sequential information. To investigate what is going on 
at different levels, we defined criteria at the line level and 
at the paragraph level. We begin with line-based criteria. 

To estimate line detection performances we begin to 
pair off all discovered lines with real (i.e. labeled) lines. 
Then, we compute two criteria, L1 and L2. L1 is a 
between sets distance, it is defined as the percentage of 
real words that belong to the discovered line. L2 takes 
into account the reading order. It is the edit-distance 
(lines are considered as sequences of words) between the 
real line and the discovered one. We compute the 
percentage of elementary operations (numbers of 
insertions, deletions and substitutions) needed to 
transform the real line into the discovered line. 

At the paragraph level, we pair off the real lines and 
discovered lines (as found in line level) and then we do 
similarly to pair discovered and real paragraphs. Then 
we compute the edit distance between discovered 
paragraphs and real paragraphs, we note this criterion 
P1. It corresponds to the system ability to aggregate lines 
into correct paragraphs. Thus, even if lines are not 
perfectly detected, P1 may be high, provided lines are 
well gathered into paragraphs. Finally, at the page level, 
we use two criteria (D1 and D2). D1 is computed after 
lines have been paired off, with the edit distance between 
the real document and the discovered ones, where these 
documents are seen as sequences of lines. The second 
criterion D2 is an edit distance again, but it compares 
two documents represented as sequences of paragraphs. 

 
3.3. Reference method 

 
We compare in the following our approach with a 

reference method. We did not find any method dealing 
with on-line handwritten documents segmentation that 
was enough described in the literature. Thus, we chose to 
implement an off-line method which is flexible enough to 
be adapted to heterogeneous documents, the Docstrum 
method [7]. This technique is not based on orientation or 
line slope and does not require global knowledge about 
characters size or inter-line space, at the opposite of other 
classical approaches using histograms or Hough 
transforms. 

Docstrum is based on terms partitioning by the k 
nearest neighbors algorithm. Segmentation is "bottom-
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up", i.e. one considers first low level elements to build 
words, lines and then blocks. Orientation, policy size, 
space between lines are estimated from nearest 
neighbors’ angle and distance distributions. Thus, the 
method we implemented is inspired of Docstrum and was 
adapted to on-line documents. 
 
3.4. Results 
 
We present in this section experimental results obtained 
by both our system and the reference method. 
 

Complete 
database 

Homogeneous 
documents 

Heterogeneous 
documents % 

Docst PFG Docst PFG Docst PFG 

L1 11.8 3.8 3.4 3.9 22.5 3.4 

L2 22.7 13.1 6.5 6.9 37.0 15.7 

P1 15.3 2.1 1.9 2.6 22.8 5.4 

D1 29.4 25.5 18.5 20.7 36.1 26.2 

D2 15.3 15.2 10.6 19.4 15.0 9.0 

Table 2. Error rate comparison between our approach 
and a method inspired by the Docstrum for different 
categories of documents, according to the criteria 
defined in §3.2. 
 

Table 2 shows the comparison between our adaptation 
of the Docstrum algorithm and our PFG-based method. 
Learning of laws parameters was made by cross-
validation. We computed 56 experiments taking for each 
55 learning documents and one test document. Results 
from table 2 are average on the 56 experiments. For 
homogeneous documents, both methods perform well and 
similarly, about 3.5% error rate for criterion L1. Results 
are still good when considering reading order for line 
detection and for lines aggregation into paragraphs. 
Error rates are however higher for criteria D1 and D2 
which concern document level, indicating either sub-
segmentation or over-segmentation of pages into 
paragraphs. For heterogeneous documents, without well 
defined structure, results are naturally worse but PFG 
exhibit higher robustness than the Docstrum based 
methods, Docstrum based method is not efficient in any 
case here with for example 22% error rate for criteria L1. 

We can see that PFG on heterogeneous documents 
sometimes provide better rates than PFG on 
homogeneous documents (L1, D2). In fact, sometimes 

some features of homogeneous documents can mistake 
PFG’s. For example in Figure 2 d), document is an 
homogeneous document but PFGs don’t find correctly 
last paragraph because last line doesn’t have same 
features that other lines in second paragraph. 

 
 

 
a) Segmentation of an heterogeneous document with 3 
paragraphs by Docstrum. The second paragraph 
contains the first line of the third real paragraph. 

 

b) Segmentation of the same document that in a) by 
PFGs. 

Line 1 

Line 2 

§ 1 

§ 2 

§ 3 

§ 1 

§ 2 

§ 3 
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c) Segmentation of an homogeneous document with 2 
paragraphs by Docstrum. Three paragraphs are found, 
the last one corresponds to the end of the last line. 

 

 
d) Segmentation of the same document that in c) by 
PFGs. Again, three paragraphs are found but the last 
one is more understandable and consists in the whole 
last line which is longer than other lines in the same 
paragraph. 

Figure 2: Segmentations samples 
 
4. Conclusion 
 
The system we presented in this paper is based on an 
extension of a probabilistic approach for on line 
handwritten documents segmentation. This method, 
based on Probabilistic Features Grammars owns some 
interesting features, it takes context into account and its 
probabilistic nature allow considering multiple 
hypotheses. However, those advantages come with a 
serious algorithmic complexity. We dealt with the huge 
combinatorial complexity of the task by introducing beam 
search strategy and by interfacing the parsing algorithm 
with a genetic algorithm. This genetic algorithm aims at 
discovering globally consistent sets of terms (e.g. lines) 
that cover a whole document. Thanks to these 
improvements, our system may now efficiently deal with 
standard documents of hundreds of words. We evaluated 
our method on a home made database containing 

documents of different qualities. To do this, we defined 
performances criteria that include reading order 
information and are thus more adapted to on-line 
handwritten documents. We validated our work 
confronting our system to a reference method we adapted 
from a classical approach of off-line documents 
segmentation. These preliminary experimental results are 
promising and show that our system behave well for all 
kinds of documents while a more classical technique 
seem more adapted to homogeneous documents only. 
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