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Abstract—We employ Eigenfaces to discriminate between
handwritten and machine-printed text at the connected component
(CC) level. Normalized images of machine print CCs are treated as
points in a high-dimensional space. PCA yields a reduced-
dimensional character space. Representative machine print CCs are
projected into character space and a local distance threshold for
each representative is automatically determined. CCs are classified
as machine print if they are within the local distance threshold of
their closest machine print representative. Otherwise, they are
classified as handwriting. Recursive character segmentation using
min graph cut is used to address the problem of touching
characters. Validation over a large NIST handwriting and machine
print database demonstrates precision of 93.98% and 89.1% for
machine print and handwriting respectively.

Keywords-Eigenfaces; Handwriting/machine print discrimin-
ation; touching character segmentation; min graph cut; NIST

1. INTRODUCTION

Many applications in document analysis and recognition
require discrimination between machine print and hand-
writing. Annotations may need to be recognized, recorded
and removed. Handwriting may need to be extracted from
forms and processed independently while machine print
connected components (CCs) are passed to an OCR engine.
Other documents may need to be indexed or searched based
on machine print or annotated entries. The goal and
contribution of this paper is to correctly label input CCs
(Figure 1, left) as machine print (green) or handwriting
(red), as illustrated in Figure 1, right.

Early work for discriminating between machine print
and handwriting relies exclusively on stroke orientation [1].
Franke et. al train an ensemble of statistical classifiers on
CC features [2]. Line straightness and symmetry features
from CCs have also been used to train a neural network for
character level discrimination [3].

An application for mail address blocks [4] uses a variety
of features to train a neural network. Character block layout
variance is used for Kanji at the text line level [5].
Discriminant functions have been applied to vertical project-
ion profiles [6] at the line, not the CC level. In [7] several
CC features extracted are used for word-level classification.

Guo and Ma use a HMM based on linguistic context [8]
in conjunction with the differences between vertical
projection profiles of machine print and handwriting. Zheng
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Figure 1. Discrimination between handwritten (red) and machine-printed
(green) text using eigenfaces. Note touching character false positives.

et al. address machine print and handwriting identification
in noisy images [9] using three two-way Fischer linear
classifiers. A SVM is used to isolate signatures from
machine print in [12] and to identify sparse handwritten
annotations occurring at arbitrary orientations in [13]. K-
means clustering followed by MRF relabeling is used in
[14] for segmentation of handwriting, machine print and
noise with an overall recall of 96.33%. In [18] a novel
approach to automatically discover features pushes error
rates of handwriting and machine print to 13.8%.

Color annotation is extracted from color documents in
[15] wusing robust feature alignment and background
subtraction. Work in [16] builds on this, making use of color
clustering and a decision tree to identify handwritten anno-
tation in marked up documents containing machine print.

Muller and Herbst [11] apply Eigenfaces [10] to
character identification by treating characters as points in a
high-dimensional space that is reduced to a Character Space
of eigenvectors using PCA. Characters are classified based
on the minimum weighted Euclidean distance. The weights
are proportional to the standard deviation in the direction of
the eigenvector. Solli also makes use of eigenfaces for
looking up fonts in a large font library [18].

We seek to overcome the limitations of previous
techniques (reliance on color, manually-derived features,
lengthy training or incremental learning cycles) by using
Eigenfaces to exploit all relevant character components
while automatically deriving CC classification thresholds.
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2. MACHINE PRINT AND HANDWRITING DISCRIMINATION

Similar to [11], we project CCs into a hyperdimensional
character space for classification. However, we discriminate
between machine print and handwritten characters, rather
than classifying machine print characters.

2.1 Character Space

Let I" = T'{,I'5,....I'y be a set of M vectors of length N
derived from N x N character images (N=64). The mean
character is deﬁned as ¥=_1 Z T;, and the difference
image of the i vector as I'; = T \Il (Figure 2).

A-E=A

Figure 2. Difference image, I'; = I';— ¥, where ¥ = mean image.
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Figure 3. First and last 9 eigenvectors capture character structure, detail.

Let A= [Iy ... Ty} Thatis, the columns of 4 are the
difference images of the M vectors in /. The covariance
matrix C for the set I" is the N’ x N’ matrix where

C = {ﬁzg/le f‘if‘JT} :ﬁAAT‘ The eigenvectors of

C are found via SVD. That is, 4 USV', where the
eigenvectors of C are the columns of U. The eigenvector
corresponding to the largest eigenvalue points in the
direction of greatest variance in character space. Because
relatively few of the eigenvectors span most of the variance
in the set I, most of the remaining eigenvectors may be
dropped, reducing the dimensionality of character space to
100 and making the algorithm computationally practical.
The first and last nine basis vectors (eigenvectors — Figure
3) capture the high-level and detailed structure, respectively,
of the characters along their respective axis. The complete
algorithm for discrimination between machine print and
handwriting is outlined in Figure 6.
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2.2 Automatic Selection of Local Distance Threshold, 0;

Eigenfaces uses a single global threshold for face
recognition. However, because machine-printed characters
cluster much more tightly than handwriting, we introduce an
algorithm to automatically select local distance thresholds, &;
for each representative machine print template, T'';,. We do
this by computing the relative density of machine print and
handwriting surrounding each I'’f (Figure 4). We used Adobe
Illustrator to create 5,957 representative templates of fonts
and styles of characters, numbers, punctuation and symbols.

To discriminate between an unknown CC, U, we project
its difference image, U = U — W, into character space to get
U’. We determine the Euclidean distance from U’ to the
projection of each I'';. If the projection of U’ lies sufficiently
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Figure 4. Radial Density (inset) for determining threshold 6; (blue circle).

close, U is considered machine print, otherwise handwriting.

A user-supplied global target for machine print
precision, P, is needed to determine 6, We begin with a
large set of machine print connected components, A, and a
large set of handwritten connected components, B, meant to
represent the distribution of its machine print or handwriting
representative in character space.

A = 273,286 machine print CCs (26 fonts, normal, bold, italic)
B = 599,724 handwriting CCs, 2100 writers (NIST SD19 DB, 1* 4 parts)

The CCs in these sets are used to determine the CC radial
density (number of proximate CCs) of machine print and
handwriting with respect to each I'';.

If we let v(r) be the volume of a hypersphere of radius r
in character space, then the machine print CC density for the
representative I'’; at a radial distance r is:

Al

|

1

Lif T} - Ajfl <~
0 otherwise

D

o)) (1)

pi(r) =
where || 4] is the cardinality of the set 4. Similarly for the
handwriting CCs. The summation in Equation 1 yields the
number of machine print connected components within
distance » of I''; divided by the volume, v(r), of character
space under consideration.

We use P = 98%, to automatically select ;. We quantize
character space about each I''; into b concentric hyper-
spheres (Figure 4). The radius of the outermost hypersphere,
R, which defines the local neighborhood of each I, is
empirically determined. 6; is the last (quantized) radial
distance, 7, before which P drops below 98%. In other
words, it is the greatest distance for which it, and all smaller
distances, satisfy the target machine print precision (98%).

2.3 Calculating Local Machine Print Precision

Local machine print precision, P(r), for a given I''; and
0, yields the fraction of CCs classified as machine print that
were actually machine print (Figure 5).
r

B * e
- ey

p(r,) o

p(r) + o(r)

Figure 5. Local Machine Print precision, P(r) for given I'";, 6;.
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3.RESULTS

The NIST SD19 database consists of 3,699 handwriting
forms such as in Figure 7. A certain partition of NIST
SD19, hsf 4, with samples from 500 different writers has
been designated by NIST for the purposes of reporting OCR
results. We use Asf 4 to evaluate our method.

After registering the images and removing the form
boxes and name field, each connected component is
classified as machine print (green) or handwriting (red)
(Figure 7). Extremely small connected components, which
do not provide enough information to make a confident
classification, are not considered.

The NIST SDO08 database includes 360 binary images of
machine print characters. Three styles (normal, bold, and
italic), six fonts (Courier, Helvetica, New Century
Schoolbook, Optima, Palatino, and Times Roman), and ten
point sizes (4, 5, 6, 8 10, 11, 12, 15, 17, 20) are represented.
Two images of randomly selected characters for each style,
font, and size, were used to test our classifier.

The confusion matrix in Table 1 summarizes our results.
The upper left entry means that when we predicted a
connected component to be machine print, we were right
98.21% of the time. Similarly, the lower right entry means
when we classified a connected component as handwriting,
we were right 71.05% of the time.

For a connected component to be classified as machine
print it must lie within the local distance threshold of the
nearest representative machine print template (Figure 4).
High machine print precision implies that local distance
thresholds are not too loose, else handwriting connected
components would be mistaken for machine print.

In general, there is a tradeoff between machine print
precision and handwriting precision. However, in this case
the low handwriting precision, 71.052%, has a specific
cause: small machine print characters get mistaken for
handwritten characters. The average height of machine print
characters is 19.72 pixels with 40% of them < 20 pixels
high, and over 93% < 23 pixels in height.

As the size of connected components diminishes, so do
many of the distinguishing features between machine print
and handwriting. To test this assertion we replaced the
machine print with a similar but larger font (about 40 pixels
high) from NIST SDO0S. The results, shown in Table 2, show
18% improvement in the precision of handwritten characters
while maintaining ~94% precision with machine print.

Predicted Machine Print Predicted Handwriting
Actually Machine Print 98.21% 1.8%
Actually Handwriting 28.95% 71.05%

Table 1. NIST SD19 hsf 4 confusion matrix. Over 98% machine print
precision, but lower handwriting precision due to font size.

Predicted Machine Print
93.98%
10.9%

Predicted Handwriting
6.02%
89.1%

Actually Machine Print
Actually Handwriting

Table 2. NIST SD19 Asf 4 adjusted confusion matrix from replacing
machine print in NIST SD19 with a larger font (~40 pixels high) from
NIST SD08.
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Figure 7. NIST SDI19 handwriting sample form. Left: original. Right:
labeled — machine print (green), handwriting (red). Note false positives from
touching machine print characters.
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Figure 8. Handwritten annotation and machine print discrimination
captures annotations although some annotations cause false positives.

Figures 1 and 8 are representative of results achieved for
discriminating between machine print and handwriting.
Most handwriting false positives result from touching
characters or annotations that artificially connect
components. Others result from too much similarity
between machine print and handwriting representatives or
insufficient discrimination of the eigenfaces algorithm.



3.1 Handwriting Accuracy by Writer

Handwriting accuracy by
writer for 500 writers

60
aot

20

o

1 I
80 85 90 95 100

Figure 9. Handwriting accuracy by writer. Each bin in the histogram shows
the number of writers for which the labeled accuracy was achieved.

Figure 9 shows the fraction of handwriting CCs correctly
classified as handwriting for 500 writers. The worst
accuracy for any single writer was 88.24%, the best 100%,
with an average accuracy of 96-97%.

3.2 Touching Character Segmentation

About 13% of the handwriting false positives are touch-
ing machine print characters. To address this we created a
recursive touching character segmentation algorithm using
min graph cut to split touching characters by seeding
source/sink with outside pixels (Figure 6). Application of
the algorithm to 1,056 touching characters consisting of
every pairwise combination of letters, in all combinations of
upper and lower case, improved classification from 4.07%
(without segmentation) to 89.19% (Table 3).

I With Segmentation |
| 89.19% |

| | Without Segmentation
| Machine print precision | 4.07%

Table 3. 4.07% machine print precision over 1,056 touching character
CCs. Recursive segmentation increased precision to 89.19%.

4. CONCLUSION AND FUTURE WORK

Based on a user-supplied global target precision, and
automated local threshold detection, discrimination of
machine print from handwriting is performed with high
precision (94%) over a large data set while maintaining
handwriting precision at 89%. Automated selection of
principle component features [18] could possibly increase
precision while greatly reducing the dimensionality of the
character space. Training on handwritten CCs and improved
segmentation of touching characters and annotations (Fig. 8)
would also likely improve precision/recall to match or
exceed levels reported in [14] while competing with error
rates reported in state-of-the-art approaches [18].

Handwritten annotations are effectively identified
without the aid of color, although annotations that touch
machine print cause false positives (Figure 8). Automated
seeding of strokes in the character segmentation algorithm
(Figure 6) could be used to decouple machine print from
annotations. Grayscale, lexical and typographic context
might also improve segmentation of touching characters.

In general, machine print that is falsely labeled as
handwriting occurs infrequently in the midst of correctly
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labeled machine print. (See Figures 1, 7 and 8.) These errors
could be corrected contextually by inspecting local
thresholds of the nearby machine print CCs to discover a
better global fit at the word or sentence level. Elimination of
font and style templates that are globally distant from the
connected components in a document might also improve
results.
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