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Abstract—We present a novel method of offline whole-word
handwriting recognition. We use automatic image morphing
to compute 2-D geometric warps that align the strokes of
each word image with the strokes of word images of training
examples. Once the strokes of a given word are aligned to a
training example, we use distance maps to compare how similar
the two words are. Like 1-D Dynamic Programming (DP)
methods, our warp-based method is robust to limited variation
in word length and letter spacing. However, due to its 2-D
nature, our method is also more robust than 1-D DP methods
in handling variations caused by additional inconsistencies in
character shape and stroke placement. Although we use DP
for coarse alignment, the novel contribution of this paper
is not 2-D DP, but morphing to automatically discover an
actual 2-D mesh-based warp, followed by the use of distance
maps to compute similarity between words. Early results are
encouraging. On two datasets (1,000 training and 1,000 test
words each), we get 88.77% and 89.33% recognition accuracy
for in-vocabulary words. These are increases of 7.89% and
17.16% above the results of a 1-D DP approach.
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I. INTRODUCTION

We present a novel offline whole-word recognition

method that uses 2-D warping and distance maps to compare

words. Our method, “word warping,” successfully handles

some of the local variation inherent in handwriting such

as inconsistent ink thickness and letters that are unevenly

spaced, stretched, compressed, or similarly distorted.

For a given pair of images, we create a regularly-spaced

rectangular mesh on the first image and a corresponding

warp mesh that defines how to push, pull, bend, and stretch

the ink of the first image to align it with the ink in the second

image (Figure 1b). Aligning the ink allows us to ignore

many of the local differences and variations inherent in

handwriting and instead compare words at a more structural

level. Once the ink is aligned by warping, we use distance

maps to quantify how different the words are.

To define the warp mesh used in alignment, we first

coarsely align the warp mesh by using 1-D Dynamic Pro-

gramming (DP) in both the horizontal and vertical directions

(Figure 1a). After coarse alignment, we perform a more

detailed alignment by using an image morphing algorithm

(Section III-E) to increase the mesh resolution and itera-

tively adjust the control points (vertices) of the warp mesh

(Figure 1b). We only use full-thickness word images for the
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Figure 1. Handwriting recognition by matching two instances of the word
“Bacon” using word warping. a) Step 1: Coarse alignment of warp mesh
using DP; b) Step 2: Improve warp mesh by morphing; c) Medial axis
pixels of each image: red=first instance, blue=second; d) Using only coarse
alignment to warp the first instance – not as good as morphing; e) Step 3:
Warping with mesh improved by morphing gives good alignment; f) Warp-
ing “Bacon” to wrong word “toast” does not align as well. g) Overlay of
medial axes from rectangular region in e; h) Step 4: Compute distance map
from (red) warped medial axis pixels (0=medial axis). Numbers=distance
map with respect to red medial axis. Step 5: Compute word matching cost
(normalized sum of blue squares) = “distance” from red medial axis.

coarse alignment. We use medial axis pixels of the words

throughout the rest of the process to simplify our morphing

algorithm and the distance metric we use to compare words.

II. RELATED WORK

Numerous HR approaches appear in the literature ([4], [8],

[13]), including some whole-word recognition methods such

as those described by Madhvanath and Govindaraju in [6].
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Whole-word approaches exist that use everything from as-

cenders, descenders, and loops to contour-based features,

profile-based features, and graph-based word descriptions.

Rath and Manmatha [10], [9] show that Dynamic Time

Warping (DTW) – a 1-D DP method – can be used to match

whole words in the context of word-spotting. We see from

their work that DTW is robust to some variation in character

spacing, width, and shape in the horizontal direction – the

direction of the 1-D alignment. Features from two words are

aligned using DTW, and the DP cost for the alignment is

used as a metric of how different the words are.

We use their DTW method for the coarse alignment of our

warp mesh (Section III-C). We also use DTW as the baseline

1-D DP approach for evaluating the performance of our 2-D

warping-based recognizer, as described in Section IV. From

this evaluation, we see the benefit of moving from 1-D to a

recognition method that handles additional 2-D variation.

Pavlidis et al. [7] perform online (not offline) HR by

comparing blending costs calculated using the physics based

approach to shape blending developed by Sederberg and

Greenwood [11] – an algorithm originally used to auto-

matically create smooth graphical blends from one shape

to another. Sometimes called shape morphing, the approach

models a polygonal shape as a wire that can be bent or

stretched into a second shape. The algorithm determines how

to manipulate the wire into the second shape using the least

amount of work. Singh et al. [12] extend the work of Pavlidis

et al. to use shape blending costs to recognize 2-D shapes

in general, including a small number of cursive words.

Like shape morphing, image morphing is a graphical

technique, but is used to morph one image into another

instead of just polygonal shapes. We use principles derived

from the work minimization approach to image morphing

by Gao and Sederberg [1] in our HR method to improve the

warp mesh alignment as described in Section III-E.

Unlike the previous recognition methods that just use

DTW cost or shape blending cost as a direct metric of how

different words are, we use these methods to align words,

but then compute a distinct metric of how different the words

are. We describe the metric in Section III-F.

III. METHODS

For a given pair of word images, I0 and I1, with

width/height w0/h0 and w1/h1, we create corresponding

rectangular meshes, M0 and M1. Initial control point spac-

ing forM0 ismax(h0, 4), except for the last row and column

of control points, which are placed at y = h0 − 1 and

x = w0 − 1. The control points of M1 (the warp mesh)

are not spaced evenly, but instead are coarsely aligned by

1-D DP (Section III-C) and then morphing (Section III-E)

is used to adjust them so that the warped medial axis pixels,

A′
0
, align more closely to the medial axis pixels (A1) of

I1. We then use D′
0
, the distance map from A′

0
, to compute

C0→1 (Section III-F). C0→1 is the cost to match I0 to I1.

I0, I1: The two images being compared

w0, h0, w1, h1: Width, height of I0 and I1
M0, M1: Meshes defining the 2-D warp from I0 to I1
P 0

c,r: Control point (vertex) in M0 at col c, row r
P 1

c,r: Control point (vertex) in M1 at col c, row r
A0, A1: Medial Axis pixels of I0 and I1
A′

0
: Pixels of A0 after being warped (using M0 to M1)

D′
0
: Distance map created from A′

0

D1: Distance map created from A1

F0, F1: Feature vectors for DP alignment

C0→1: Cost of matching I0 to I1
C1→0: Cost of matching I1 to I0
C(I0, I1): Total word matching cost between I0 and I1

Figure 2. Reference key to symbols and notation.

Since the cost to match I0 to I1 is not necessarily the same

as the cost to match I1 to I0, we repeat the steps with I0
and I1 swapped to compute C1→0. The total word matching

cost, C(I0, I1), is the sum:

C(I0, I1) = C0→1 + C1→0 (1)

Adding the two costs ensures that C(I0, I1) is symmetric

for a given pair of images regardless of order. C(I0, I1) is

the distance metric we use for word comparison. We call it

“cost” to avoid confusion with distances in distance maps.

Recognition of a word is performed by computing the

word matching cost between it and each training example

and using the label from the training example resulting in

the minimum word matching cost.

A. Preprocessing

We preprocess manually-segmented word images by per-

forming background removal, slant correction, crop/pad, and

binarization. Background estimation for background removal

is computed with a large median kernel as described in [2].

After background removal, a global threshold value for each

page is determined for later binarization using a method

described in [3]. Slant correction consists of a horizontal

image shear after estimating the slant angle over the central

region of each page image. The angle estimation uses ink

runlengths accumulated into a histogram based on angle

bins. Baseline estimation is used to determine whether to

pad the top or bottom of the image, and the image is cropped

to the left-most / right-most ink pixel after the slant removal.

After all other preprocessing, the word image is binarized

using the previously selected threshold.

B. Distance Map and Medial Axis

We compute distance maps for bitonal images using a

forward-backward algorithm. Each pixel in the resulting

distance map contains the Manhattan distance (in number of

pixels) to the nearest edge of an ink component. The greater

the distance from ink, the higher the value of the pixel in
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the distance map. Values within an ink component are zero

(on the border with the background) or negative (within the

component) – progressively increasing in magnitude as the

center of the ink component is approached.

Medial Axis pixels are those in the distance map with

values less than or equal to zero not having any 4-connected

neighbors more negative than themselves. We remove from

the result any pixels for which the North, Northwest, and

West neighbors are all also medial axis pixels.

C. Dynamic Programming for Coarse Mesh Alignment

For horizontal alignment of M1, we use the DTW al-

gorithm described in [10]. Feature vectors F0 and F1 are

computed from the normalized ink profile, upper word

profile, lower word profile, and background to ink transition

counts of the respective word images, I0 and I1. The DTW

function to build the DP alignment table is:

D(i, j) = min







D(i− 1, j)
D(i, j)
D(i, j − 1)







+ d(i, j), (2)

where d(i,j) is the cost to align F0(i) with F1(j), and is

defined as:

d(i, j) =

4
∑

k=1

(F0(i, k)− F1(j, k))
2, (3)

where k is the index to access the four features in the vector

at the alignment position (profile, upper/lower indention

profile, transition count). We also use the same Sakoe-Chiba

band DP constraint with radius 15 as the authors of [10].

The alignment of F0 and F1 is found by following the

DP path backward through the DP table when the DTW

algorithm is complete. The alignment is used to map x-

coordinates fromM0 to the corresponding x-coordinate to be

assigned to the corresponding control point in M1. The same

is done for y-coordinates using the DTW result for vertical

alignment except that we only use a single-dimensional

feature vector – just the ink profile of the word images

(projected onto the vertical axis). Therefore, in Equation 3,

the summation is only for k = 1.

D. Warping Coordinates

Since quads in M0 are rectangular, the s, t coordinate

within a quad (s and t having range [0, 1]) is easy to calculate
for any point x, y. The warped coordinate x′, y′ is then

computed by bilinear interpolation of s, t within the vertices

of the corresponding quad of the warp mesh, M1.

E. Morphing for Warp Mesh Improvement

In image morphing, the start and end mesh define a warp

from one image to another. Interpolating positions and pixel

colors at evenly-spaced time slices between the start and end

results in a series of images forming a graphical morph from

one image to the other. The work minimization approach to

image morphing [1] automatically generates the end mesh

by iteratively improving the mesh – adjusting its control

points to reduce the overall morph cost according to a work

equation – and refining the mesh – subdividing it into more

detailed quads. The work equation includes costs for work

due to angle change, stretching, and pixel color change.

We adapt the morphing algorithm to the application of

aligning handwritten words. Our algorithm is as follows:

refine count= 0; m =max(4, h0/4) // (h0 = height)

while m > 16
m = m/2; refine count=refine count+1

for mesh level=1 to refine count

for imp=1 to improve count // (we use 3)

// improve:

for each P 1

c,r

x, y = P 1

c,r

min = placement costx,y // (Equation 4)

XYmin = x, y
for each x, y in search area of P 1

c,r

if placement costx,y < min then

min = placement costx,y
XYmin = x, y

P 1

c,r = XYmin // (update control point)

if mesh level < refine count

// refine:

increase resolution of M0, M1 by factor of 2

The refine step doubles mesh resolution by adding control

points at the midpoints of each quad/edge in M0 and M1.

In the improve step, each control point, P 1

c,r, is in turn

moved to the lowest cost position within its current search

area. The search area is constrained to a rectangular region

surrounding the current position of the control point. The

region extends 0.4δ in each direction, where δ is the current

control point spacing in M0 (δ gets halved every time a

refine occurs). The search area is also constrained by the

control points around it. For example, P 1

c,r cannot go above

any of the 3 control points above it in its 8-neighborhood.

The cost of placing P 1

c,r at any given search position x, y
within the search area is:

placement costx,y =
1

n+ 1

n
∑

k=1

D1(A
′
0
[k]), (4)

where A′
0

are warped using the search position as the

position of P 1

c,r in M1, n = ‖A′
0
‖, and D1(A

′
o[k]) is the

value in D1 at the position of the kth warped medial axis

point in A′
0
. In effect, the cost of placing P 1

c,r at this search

position is the average distance the medial axis points of I0
would be from the nearest medial axis pixels of I1 if we

were to place P 1

c,r at this search position.

We actually do not use the entire set A′
0
of medial axis

pixels during cost calculation for search positions. Since

only the pixels within the four mesh quads sharing control
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point P 1

c,r as a vertex move when the control point is

adjusted, only the costs associated with those points will

affect the cost at any given search position for that control

point. To speed up processing, we ignore all A′
0
points

outside of the four adjacent quads.

F. Word Matching Cost

After M1 has been aligned using DP and morphing, we

compute the warped medial axis, A′
0
, of I0 (red-shaded

pixels in Figure 1g). We then compute the distance map,

D′
0
, of the warped medial axis A′

0
(Figure 1h). Most of the

A′
0
pixels should be closely aligned to pixels of A1 due to

morphing. What tells us if the words are actually similar or

not is if the pixels of A1 (blue-bordered pixels in Figure 1h)

also align well to pixels of A′
0
, or whether their values in

the distance map are high, suggesting that the words are not

similar. We compute C0→1, the cost to match I0 to I1, as:

C0→1 =
1

‖A0‖+ 1

‖A1‖
∑

i=1

D′
0
(A1[i]), (5)

where D′
0
(A1[i]) is the value in D′

0
of the location of the

ith medial axis pixel in A1.

IV. EXPERIMENTS

We perform experiments on two datasets of labeled word

images. The first dataset consists of words from a set of 20

pages of George Washington’s manuscripts [5]. The second

consists of words from pages of Jennie Leavitt Smith’s

diary1, downloaded from the “Mormon Missionary Diaries”

online collection of the Brigham Young University Harold B.

Lee Library, available at http://www.lib.byu.edu/dlib/mmd/.

We manually segment and label each word to provide ground

truth for our experiments.

For each dataset, we select the first 1,000 word images

as training examples for which the recognition system is

allowed to look at the labels. We use the next 1,000 words

(which are not used as training examples) as test data. We

compare each test word with the training words and assign it

the label from the training word that it most closely matches.

This is done both using our 2-D word warping method and

also using just the 1-D Dynamic Time Warping alignment

cost [10]. We also record the word warping results when

using only coarsely-aligned meshes without morphing.

We assess the recognition accuracy of each method by

comparing the ground truth labels with the labels assigned

by the recognizer. Recognition accuracy is calculated as the

number of test words labeled correctly by the recognizer (the

number given the same label as its ground truth), divided

by the total number of test words. The string comparison

between the label and ground truth is case-sensitive.

Since many of the test words are Out of Vocabulary (OoV)

words, meaning no training examples have the same label as

1Our preprocessed Smith dataset word images are available upon request.

Table I
EXPERIMENTAL RESULTS – WORD RECOGNITION ACCURACY

Washington Dataset - 1,000 test words (748 in-vocabulary)

Method Total Accuracy In-Vocab Accuracy

(# correct / # possible) (# correct / # possible)

DTW (1-D DP) 60.50% 80.88%

(605 / 1000) (605 / 748)

Word Warping 65.30% 87.30%

(only coarse aligned) (653 / 1000) (653 / 748)

Word Warping 66.40% 88.77%

(morphing aligned) (664 / 1000) (664 / 748)

Smith Dataset - 1,000 test words (787 in-vocabulary)

Method Total Accuracy In-Vocab Accuracy

DTW (1-D DP) 56.80% 72.17%

(568 / 1000) (568 / 787)

Word Warping 64.40% 81.83%

(only coarse aligned) (644 / 1000) (644 / 787)

Word Warping 70.30% 89.33%

(morphing aligned) (703 / 1000) (703 / 787)

their ground truth, we also report the recognition accuracy

with respect to the number of in-vocabulary words (total test

words minus the number of OoV test words).

V. RESULTS AND DISCUSSION

Our word warping method is noticeably more accurate

than DTW (the baseline 1-D DP method) on both datasets

(Table I). Even without using morphing to improve the warp

mesh, word warping with coarsely-aligned meshes results

in an increase in recognition accuracy of 6.42% for in-

vocabulary words with the Washington manuscripts dataset

and 9.66% with the Smith diary dataset. Recognition is

even better when we include the morphing step. For the

Washington dataset, in-vocabulary accuracy is 88.77%, an

increase of 7.89% from the baseline (DTW). For the Smith

dataset, we see a larger improvement of 17.16% to 89.33%.

Morphing only contributes 1.47% to the accuracy of the

Washington dataset, however, it contributes 7.5% to the

accuracy of the Smith dataset. We observe that the the

Washington penmanship is exceptionally consistent but there

is more variation in the Smith dataset, requiring better align-

ment in order to recognize words. We are encouraged by this

result because it suggests that word warping with morphing

is adept at handling local variation and should generalize

to datasets with multiple authors. This ability to handle

variation may even allow us to use synthetically-created

training data to improve the OoV recognition accuracy.

Figure 3 shows our medial axis alignment using morphing.

Many of the recognition errors that we see are minor,

such as differences in case, single letters, or word endings

(Figure 4a–4c). Some errors are more blatant (Figure 4d).

For many errors, the correct match is ranked very near the
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(a)

(b)

Figure 3. Alignment of medial axes. a) Top: two occurrences of the
word “Billings” (Smith dataset); Bottom: corresponding medial axes before
alignment (left) and after (right). b) ”Winchester” (Washington dataset).

(a)

(b)

(c)

(d)

Figure 4. Examples of recognition errors (Smith dataset). Test words
followed by the erroneous best match. a) Errors only because of capital-
ization differences. b) Very similar words: “come” vs. “came” and “them”
vs. “then.” c) ”Winward” vs “Winwards.” d) Some more obvious errors.

top (Table II). In fact, the correct result is ranked in the top

3 matches more than 94% of the time for both datasets.

VI. CONCLUSION

We have presented a 2-D warping method for comparing

words to each other for offline handwriting recognition.

Our method takes advantage of 2-D warping to get better

word matching results. Our early tests on this method are

encouraging, showing noticeable improvement over 1-D DP

methods.
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