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Abstract—Large document collections containing multiple 
topics can be overwhelming to understand, requiring 
librarians and archivists significant time and efforts to develop 
access points. Efficient computational methods can aid this 
process by uncovering groups of documents that can be 
described for access. We investigate the use of density based 
clustering with document segmentation to identify points of 
access as dense clusters of information. The method returns 
stories and classes of cohesive clusters that can be described as 
precise points of access. We found that our method performs 
more efficiently than K-means clustering and topic model 
using Latent Dirichlet Allocation (LDA). We use Hadoop to 
process a large document collection.  

Keywords: density based clustering, information retrieval, 
distributed processing, Hadoop/MapReduce, digital archives 

I. INTRODUCTION

As more document collections are born digital or 
digitized and their size grows exponentially, understanding 
their contents to provide precise access is a challenging 
problem for digital archivists. To address this problem, we 
investigate a computational method to automatically 
identify stories and classes of information that can be used 
to derive collections descriptions. The method maps finding 
aids [1], in which archivists describe the relevant contents 
of a collection in parts and in whole, allowing users to 
navigate and understand the collection easily.  

A document collection refers to a set of documents that 
belong to the same provenance. This entails that the 
documents within have intrinsic relationships. In turn, these 
relationships are more pronounced between some 
documents that relate to a same target activity, or belong to 
a same function. In contrast to keyword-based indexing and 
retrieval models, finding aids describe groups of 
thematically tight related documents. These descriptions are 
used as access points to help users find information within 
smaller sets of documents. Traditionally, building a finding 
aid is a manual process that requires reading the documents 
and making inferences about their relationships to generate 
descriptions  [2].  

To facilitate the process of understanding a large 
collection of documents in order to produce a finding aid, 
thematically related groups of documents can be identified 
automatically. In this project we address the challenge of 
generating clusters containing documents that cohesively 
reflect activities, projects, and transactions recorded in large 
collections. We developed a density based clustering 

method with document segmentation that receives large 
amounts of documents as input, and narrows the data to 
clusters containing cohesive stories and classes of 
information. Once these clusters are identified, describing 
their contents as access points is feasible. 

Density based clustering is a method to identify tight 
clusters out of a set of data points. As opposed to just 
assigning each data point to a cluster, this algorithm assigns 
relevant data points to a corresponding cluster. Documents 
that are not associated with any cluster are treated as noise 
points. In turn, noise points are considered less relevant to 
obtaining precise notions about the collection. Another 
advantage of density based clustering is that a-priori 
knowledge of the number of cluster seeds is not required.  

Documents in a collection may have irregular sizes and 
diversity of contents. To account for these variations, we 
introduce a document segmentation step to form the clusters 
[3]. Document segmentation finds similarities between 
documents that may refer to more than one topic or activity 
(and therefore may belong to more than one cluster), and 
identifies common themes between documents that differ in 
size. During pre-processing, documents are first divided into 
segments with small length variations, and the similarity 
scores between segments are used for clustering. For 
scalability purposes we utilize Hadoop for distributed 
computing [4].  

We tested our method with a large email collection that 
presents most of the challenges involved in document 
collections such as: diversity in document sizes and topics, 
repetitive themes, and duplicate documents. We compared 
the results obtained between segmented and non-segmented 
density based clusters and between segmented density based 
clustering with K-means clustering and topic extraction 
using Latent Dirichlet Allocation (LDA).  

Our main contribution is the development and 
implementation of a scalable density-based clustering 
method that uses paragraph segmentation to generate 
clusters. These clusters contain classes of information as 
well as stories about projects and transactions. Described as 
access points, the clusters provide an overall understanding 
of the collection. Following we detail our implementation 
and discuss the results obtained.  

II. RELATED WORK

Our work is related to topic detection and tracking in 
information retrieval, as well as to large-scale density based 
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