
Recognizing Text Elements for SVG Comic Compression and its Novel Applications

Chung-Yuan Su
Dept. of Engineering Science
National Taiwan University

Taipei, 10617, Taiwan
d98525007@ntu.edu.tw

Ray-I Chang
Dept. of Engineering Science
National Taiwan University

Taipei, 10617, Taiwan
rayichang@ntu.edu.tw

Jen-Chang Liu
Dept. of Computer Science

National Chi Nan University
Nantou, 54561, Taiwan
jcliu.ncnu@gmail.com

Abstract—SVG (scalable vector graphics) has become the
standard format for 2D graphics in HTML5. Although some
image-to-SVG conversion systems had been proposed, the sizes
of files they produced are still large. In [1], we proposed a new
system to convert raster comic images into vector SVG files.
The compression ratio is better than the previous methods.
However, these methods do not process text in raster images.
In this paper, we improve our system to recognize text
elements in the comic and use these text elements to provide
better compression and novel applications. The proposed
method uses SCW (sliding concentric windows) and SVM
(support vector machine) to identify text regions. Then, OCR
(optical character recognition) is applied to recognize text
elements in those regions. Instead of encoding the text regions
as vectors, the text elements are embedded in the SVG file
along with their coordinate values. Experimental results show
that we can reduce the file sizes to about 52% of the original
SVG files. Using these text elements, we can translate comics
into other languages to provide multilingual services easily.
Text/content-based image search can be supported efficiently.
It can also provide a novel application system for story teller.

Keywords- text detection, SVG, vector compression, SCW
segmentation

I. INTRODUCTION
Since Internet grows rapidly in recent years, multimedia

transmission has become an important issue on networks.
With the mature development of display technology, the
media information is delivered not only on computers but
also on portable handheld devices. Current raster formats,
such as JPEG, BMP, PNG and TIFF, are all pixel-based
image formats. In order to rescale the images to be displayed
at different resolutions, interpolation of pixel values needs to
be applied. However, these operations cause the degradation
of image qualities, such as jagged or fuzzy edges, as shown
in Fig. 1(c). Furthermore, raster formats cannot represent the
meaning of images that can be indexed by image search
engines. Vector formats provide an alternative to compensate
the mentioned drawbacks.

SWF, PDF and SVG (scalable vector graphics) are
popular vector formats nowadays. Among them, SVG [2] is
a revolutionary new graphic standard that has been
developed by W3C. It is an XML-based language that
describes 2D graphic with vector format. Standardization of
SVG satisfies the growing demands on a dynamic, scalable,
cross-platform and complicated interactive usages of Internet.
The current version of SVG is 1.1, and SVG Tiny (SVG-T)

1.2 is suitable for mobile devices. Compared to raster format,
SVG format has the following advantages:

• High compression ratio: because these files based
on XML contain many repeated fragments of text, it
suited to be compressed by gzip.

• Arbitrarily scalable: vector formats record the Bezier
curves. When the image needs to be rescaled, only
the positions of the control points have to be
changed. It maintains a good perceptual quality in
different resolutions of display devices, as shown in
Fig. 1(b).

• Easily editable: unlike SWF and PDF formats, SVG
files can be modified using traditional text editors
without using special image editors.

• Embedding of raster images: use the <image> tag to
embed raster images.

• Being indexed by search engines: search engines can
read XML files, so it can retrieval image based on
specific text information.

(a) (b) (c)

Figure 1. (a) Original image. (b) Vector image × 4. (c) Raster image × 4.

Several raster to vector conversion software have been
developed, such as Stanford Vector Magic [3], Adobe
Illustrator and Corel Draw. The sizes of files they produced
are still large and consume most of time in image rendering.
If we limit the file size, image quality degrades accordingly.
In our previous work [1], a novel image processing
algorithm is proposed to reduce the SVG files size. However,
these methods do not consider processing text in raster
images. Because vectorization converts a raster image to the
coordinates of Bezier curves and lines, it wastes storage to
use these elements to represent text, especially for comic
images with lots of dialogs, as shown in Fig. 1(a). In this
paper, we proposed a system to extract text from raster
comic images and then OCR (optical character recognition)
task is applied. After erasing text, we convert raster format
into SVG vector format. Finally, the OCR results with their
coordinate values are embedded using <text> elements in
the SVG file. The main contributions of the proposed system

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.267

1329

are listed as follows. (1) It can further reduce the sizes of
SVG files. (2) The OCR results from comic images can be
translated into other languages to provide multilingual
services easily. (3) It can support text/content-based vector
image search efficiently. (4) It can support story teller
functionality. Experimental results show that we can reduce
the file sizes to about 52% as compared to original SVG files.
Novel applications such as SVG image search and story
teller are examined.

II. RELATED WORKS
The process of raster-to-vector conversion often involves

three steps. Firstly, it determines color regions and merges
similar color regions. Then it detects their edges. Finally, it
fills in colors and constructs a complete vector image.
Consequently, the number of colors and the detail of images
will affect the converted file sizes. In [1], we adopt Autotrace
[4] to vectorize comic images, and then use the vector
contour searching algorithms for removing extra spaces,
combining the slope of clips, and merging similar color
regions to compress the vector images. This method achieves
high image quality and compression ratio. Battiato et al. [5]
used Data Dependent Triangulation (DDT) method to
vectorize graphics. Pixel neighborhood is approximated by
triangles. In rendering stage, they merge adjacent triangles
when they have the similar filling color in order to reduce
file size. Zhang et al. [6] proposed a new trapped-ball
method combined with detected decorative lines to segment
cartoon image animation. Temporal coherence is used to
extract a unified background or foreground before
vectorization to reduce file size and achieve a high quality
vectorized result. These approaches often merge or delete as
many redundant objects as possible to reduce the file size.
One advantage is that it allows perceptually better image to
be transmitted within the limited bandwidth, and the other
advantage is that it can reduce image rendering time.
However, all of them do not process text in the image before
vectorization.

Text contained in the images often convey useful
message to people. It is important to let readers from
different countries to realize text information directly.
Canedo-Rodriguez et al. [7] focused on the signboard images.
Their method extracts text using DCT coefficients and then
text is recognized by OCR and translates from English to
Spanish. Nakai et al. [8] proposed a retrieval method for
images of documents in various languages. Local and
additional descriptors are used as text features. Their purpose
is similar to one of our contributions. Another useful
application in [9] is a device with a head-mounted video
camera for the blind. Particle filter is applied to track text.

III. PROPOSED METHOD
The input of our system is a raster comic image. At first,

the system uses SCW (sliding concentric windows) [10] to
segment text as our ROI (region of interest). After using
morphology and CCL (connected component labeling), the
text candidate regions can be determined. Several features,
including aspect ratio, orientation, edge density variation

and coverage are calculated and then forwarded to SVM
(support vector machine) to classify real text regions. Next,
OCR task is applied to real text areas and the coordinates of
text elements are recorded. We erase text in the comic
image and then convert the text-free raster image into SVG
vector format. Finally, the recognized text elements and
their coordinate values are embedded as readable characters
into SVG files. The proposed method can reduce the sizes of
SVG files compared with our previous method [1].
Moreover, the embedded text elements can provide
opportunities for novel applications. Some applications will
be discussed in Section IV. Fig. 2 shows the system
flowchart. We now describe each process step in detail.

Figure 2. Flowchart of the proposed system.

A. SCW Segmentation Method
Text regions in the comic image have significant

properties, such as irregularities in texture and abrupt
changes in local intensity. In this paper, we adopt SCW [10]
to segment text from the comic image. The algorithm is
composed of the following steps:

• Produce two concentric windows A and B of size
2X1×2Y1 and 2X2×2Y2, respectively. The windows are
shown in Fig. 3(a).

• Start to scan the comic image from left to right and
from up to bottom, as shown in Fig. 3(b). Then,
calculate mean values or standard deviations in
windows A and B.

When the ratio of mean values or standard deviations of
windows A and B is larger than a threshold, then the central
pixel of the windows is considered as a text (set to 1),
otherwise, it is taken as a non-text (set to 0). The equation
can be expressed as below.

⎪
⎩

⎪
⎨

⎧

=

>=
⇒

otherwiseyxI

T
M
MifyxI

yxI

s

B

A
s

o

 ,0),(

 ,1),(
),(, (1)

1330

where Io is the original comic image, Is is the binary image
after SCW, T is the threshold and M represents the mean
value or the standard deviation. In our experiment, we
choose to use mean value because it has lower computational
complexity, and the performance is similar to that using
standard deviation. Then, we apply morphology operation
and CCL to Is. Since we focus on the horizontal alignment of
text, the rectangular structure elements of dilation and
erosion are chosen to be 1× 6 and 2× 3, respectively. In the
CCL, 4-neighborhood is used to avoid over-connection.
Components that have less than 100 pixels are removed
because of the limitation of OCR applied in the system. We
then obtain the Ic image which contains text candidate
regions. Fig. 4(a) shows the SCW result, and Fig. 4(b) shows
the text candidate regions with the minimum bounding box
(green color).

1X

1Y

2X

2YA
B

(a) (b)

Figure 3. (a) Concentric windows A and B. (b) Scanning the raster comic
image.

(a) (b)

Figure 4. (a) The result of SCW. (b) Text candidate regions.

B. Connected Components Based Analysis and SVM
Classifier
As shown in Fig. 4(b), some text candidate regions are

false alarms. Therefore, statistical features on the connected
components can be analyzed to distinguish the real text
region from the non-text region. The following features are
proposed:

1) Aspect ratio of the text candidate regions
The width W and height H can be found from the minimum
bounding box of the text candidate region. The aspect ratio
is given below.

H
WioAspect rat = (2)

2) Orientation of the text candidate regions
We use the second moment to calculate the rotation of the
text candidate regions. It is defined as follows.

∑∑∑∑

∑∑

= == =

= =

−
×= W

w

H

h
ci

W

w

H

h
ci

W

w

H

h
ci

i

hwIhhwIw

hwwhI

1 1

2

1 1

2

1 1

),(),(

),(
2)2tan(θ , (3)

where i is the index of text candidate regions.
3) Edge density variation of the text candidate regions

Because text regions have plenty of edges, the EDV (edge
density variation) [11] can be calculated to discriminate real
text regions from non-text regions. We divide the minimum
bounding box into N equal-size blocks, where N∈ [4, 8, 10]
can be determined by the aspect ratio. The edge density edj
represents the number of edge pixels in each block for

Nj ..., 1, ,0= .Then the EDV is defined as follows.

M

N

j
Mj

ed

eded

EDV
∑ −

= , (4)

where edM is the average of all the edj.
4) Coverage of the text candidate regions

Non-text regions may have similar aspect ratio to the real
text regions, but they usually cover less area in the bounding
box than text region does.

HW
TCCoverage A

×
= , (5)

where TCA is the total number of text pixels in the minimum
bounding box.

For each text candidate region, a 4-dimension feature is
extracted and then SVM is used for classification. Here we
use the LIBSVM [12] and choose radial basis function
(RBF) as our kernel function. We then merge adjacent
minimum bounding boxes to compose text line in horizontal
direction in order to reduce the coordinates. Fig. 5(a) shows
the result of classified text regions with merging adjacent
minimum bounding boxes after SVM. An OCR freeware,
JOCR [13] is applied to recognize text elements in each text
region. JOCR is adopted because it has high recognition rate
for characters. Fig. 5(b) shows the comic image after erasing
text elements. OCR recognized characters and their
coordinates are recorded for embedding in the SVG file.
Note that the art or signature fonts cannot be recognized by
JOCR, like the authors signature as shown in Fig. 7(c) and
Fig. 7(d). These text regions that cannot be recognized by
OCR are encoded as vector formats.

(a) (b)

Figure 5. (a) The classified text regions. (b) After erasing text elements.

1331

C. Embedding Characters In SVG Files
The OCR results and coordinate values are embedded in

SVG files. In particular, the <text> element is supported for
rendering text in SVG. The syntax can be represented as
follows.

<text x = “c1” y = “c2” font-size = “c3”>Text</text> (6)

where c1 and c2 are the coordinate values of text position,
and c3 is the value of text size to tweak the rendered text to
fit the original text region. Fig. 6(a) shows the rendered
comic image after decoding the SVG file embedded with
<text> tags. These texts are translated to Traditional
Chinese in Fig. 6(b). It can provide multilingual services for
entertainment and education.

(a) (b)

Figure 6. (a) The OCR results are embedded in SVG file for rendering. (b)
Translation to Traditional Chinese.

IV. EXPERIMENTAL RESULTS
We take comic images as our testing data to analyze the

compression ratio and image rendering time on portable
handheld devices. 200 comic images containing texts or
dialogs were collected from the Internet. In these comic
images, we use 50 comic images for training and 150 comic
images for testing. The parameters of SCW are set as X1=1,
Y1=2, X2=2, Y2=4, T=1.05. Fig. 7 shows some results of text
detection.

(a) (b)

(c) (d)

Figure 7. Some experimental results of text detection.

Let SVG represents the SVG file without processing text
and SVGt represents the SVG file after processing text. |˙|

denotes the size of a file. The compression ratio between
SVG and SVGt is defined as below.

%100/ ×= SVGSVGrationCompressio t (7)

Fig. 8 shows the compression ratio between SVG and SVGt
for 15 comic images. It can observed that the largest
compression ratio is 32.5% in #5 comic image with 214
characters, and the smaller compression ratio is 81.6% in
#15 comic image with 37 characters. The average
compression ratio for total 150 comic images is about 52%.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Comic image #

C
om

pr
es

si
on

 r
at

io
 (

%
)

Figure 8. File compression ratio between SVG and SVGt.

In image rendering time, we test 15 comic images above
on HTC Magic mobile device which runs Android 1.5 OS
on Qualcomm MSM7200A 528 MHz processor with 288
MB RAM. Fig. 9 shows that the comparison of rendering
time. SVGt only requires roughly half of SVG rendering time.
It proves that our SVGt is suitable to be applied on mobile
devices (such as Ebook or smartphone) with limited CPU
speed and memory.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

Comic image #

R
en

de
rin

g
tim

e
(S

ec
.)

SVG
SVGt

Figure 9. Rendering time comparison between SVG and SVGt.

Since SVG is based on XML file, it is efficiency to
search SVG images as explained below. There are two ways
to achieve this purpose: text-based, and content-based. For
text-based search, we can use text as our input query. As
shown in Fig. 10, we input ‘cubicle’ for query and two
results are retrieved. There are indeed cubicle scenes
existing in these two comic images. For content-based, a
vector image is generally composed of several Bezier curves
which are connected consecutively to represent object
shapes. We can use a stroke as a query, and then these

1332

strokes are approximated by Bezier curves. The similarity is
calculated by matching features which are extracted from
Bezier curves between SVGt images. Fig. 11 shows the
flowchart of the content-based SVG image retrieval. Fig. 12
shows an example that it draws a human head shape as a
query, and two results are returned.

Figure 10. The retrieval results of the text-based SVG image retrieval.

Figure 11. Flowchart of the content-based SVG image retrieval.

Figure 12. The retrieval results of the content-based SVG retrieval.

The flowchart of the story teller system is shown in Fig.
13. In this application, users can type any texts they like as a
story. The system will parse keywords in the story and
search the related comics in the database. It converts text
information into visual image for telling story. For example,
we type a short story such as “After the brainstorm, they
got a new idea and then started to implement a product.
One month later, they participated the innovation
competition and introduced their product to the
reviewers. Finally, they got the first award because of
their perfect demonstration”. The system will parse the
story, extract the keywords and start to find corresponding
text in SVGt images. The results will be arrangement
according to text ordering in the story, as shown in Fig. 14.

Figure 13. Flowchart of the story teller.

After the brainstorm, they got a new idea and then started to implement a product. One
month later, they participated the innovation competition and introduced their product to the
reviewers. Finally, they got the first award because of their perfect demonstration

Figure 14. The results of the story teller.

V. CONCLUSION
In this paper, we convert comic raster images to SVG

files and recognize/embed text elements in the SVG files. In
this way, we can further compress the SVG files to about
52%. Using these text elements, we can translate comics into
other languages to provide multilingual services easily.
Text/content-based image search can be supported efficiently.
A novel application system for story teller is also examined.

ACKNOWLEDGMENT
This paper is supported by NSC Taiwan under grant 98-

2410-H-002-060-MY2.

REFERENCES
[1] Ray-I Chang, Yachik Yen, Ting-Yu Hsu, “An XML-based Comic

Image Compression,” LECT NOTES COMPUT SC, Vol. 5353, pp.
563–572, 2008.

[2] Scalable Vector Graphics (SVG), http://www.w3.org/Graphics/SVG/.
[3] Stanford Vector Magic, http://vectormagic.com/home.
[4] AutoTrace, http://autotrace.sourceforge.net.
[5] Sebastiano Battiato, Giovanni Gallo, Giuseppe Messina, “SVG

Rendering of Real Images Using Data Dependent Triangulation,” In
Proc. of ACM/SCCG, pp. 191–198, 2004.

[6] Song-Hai Zhang, Tao Chen, Yi-Fei Zhang, Shi-Min Hu, Martin, R.R.,
“Vectorizing Cartoon Animations,” IEEE Transactions on
Visualization and Computer Graphics, Vol. 15, pp. 618-629, 2009.

[7] Canedo-Rodriguez, A., Soohyung Kim, Kim, J.H., Blanco-Fernandez,
Y., “English to Spanish Translation of Signboard Images from
Mobile Phone Camera,” In Proc. of IEEE SoutheastCon, pp. 356-361,
2009.

[8] Tomohiro Nakai, Koichi Kise, Masakazu Iwamura, “Real-Time
Retrieval for Images of Documents in Various Languages using a
Web Camera,” International Conference on Document Analysis and
Recognition, pp. 146-150, 2009.

[9] Hideaki Goto, Makoto Tanaka, “Text-Tracking Wearable Camera
System for the Blind,” International Conference on Document
Analysis and Recognition, pp. 141-145, 2009.

[10] C.N.E. Anagnostopoulos, I.E. Anagnostopoulos, V. Loumos, E.
Kayafas, “A License Plate Recognition Algorithm for Intelligent
Transportation System Applications,” IEEE Transactions on
Intelligent Transportation Systems, Vol. 7, pp. 377-392, 2006.

[11] Wei-Yuan Chen, Shu-Yuan Chen, “Adaptive Page Segmentation for
Color Technical Journals' Cover Images,” Image and Vision
Computing , vol. 16, pp. 855-877, 1998.

[12] LIBSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
[13] JOCR, http://home.megapass.co.kr/~woosjung/Product_JOCR.html.

1333

