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Abstract—In this paper, the Earth Mover’s Distance (EMD)
is used as a similarity measure in the mathematical symbol re-
trieval task. The approach is based on the Bag-of-Visual-Words
model. In our case the features extracted from each symbol
are clustered by means of Self-Organizing Maps (SOM) and
then occurrences of features in the clusters are accumulated in
a vector of visual words. The comparison between the latter
vectors is performed with the EMD which naturally allows to
incorporate the topological organization of SOM clusters in the
distance computation.

The proposed approach is experimentally tested in a mathe-
matical symbol retrieval task and compared with the cosine
similarity and with some variants that have been recently
proposed.
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I. INTRODUCTION

The digitization of collections in libraries has been widely
addressed in the last years. Different types of documents call
for different approaches. For instance printed documents can
be processed by Optical Character Recognition (OCR) tools
to be indexed on the basis of their textual content. Scientific
and technical documents are particularly difficult to handle
and several tools, designed to recognize the mathematical
expressions in printed documents, have been proposed. In [1]
the limits of commercial OCR tools for the recognition
of mathematical expressions are discussed. OCR engines
recognize the textual parts with a great accuracy, but are
less accurate with mathematical expressions. It is therefore
appropriate to search for mathematical expressions by using
document image retrieval approaches based on the retrieval
of mathematical symbols [2].

In this paper, we propose to use the Earth Mover’s
Distance to compute the similarity of mathematical symbols
represented in the bag of visual words paradigm. The sym-
bols are described with Shape Context (SC) that are clustered
to reduce the number of different SC to compare. Symbols
are then indexed by computing the occurrences of SCs in
each cluster. In our approach the clustering is performed with
the Self-Organizing Map (SOM) that spatially organizes the
cluster centers to reflect their similarity in the input space.

The SOM properties are exploited in the retrieval in order to
allow an inexact match between symbols that are described
with similar, but not identical, SCs. This is achieved by
using the Earth Mover’s Distance to compute the similarity
between distributions of SCs assigned to the symbols.

The paper is organized as follows. In Section II we
summarize the overall approach adopted for mathematical
symbol retrieval. The similarity measures considered are
described in Section III and the Earth Mover’s Distance
is discussed in Section IV. The experimental results are
summarized in Section V while the conclusions are drawn
in Section VI.

II. MATHEMATICAL SYMBOL INDEXING

Referring to Fig. 1, the first step of both symbol indexing
and retrieval is the features extraction, where symbols are
represented by Shape Context (SC) descriptors [3]. Let P
be the set of contour points of a symbol. If the symbol is
composed by more than one connected component then P
contains the contours of all the components. The SC for
each point pi in P is computed by considering the relative
position of the other points in P that are accumulated in
a coarse histogram hi whose bins are uniform in log-polar
space. Let m be the cardinality of P and pj be one of the
remaining m–1 points in P . The point pj is assigned to
one bin according to the logarithm of the Euclidean distance
between pi and pj and to the direction of the link between pi
and pj . The histogram hi is defined to be the Shape Context
of pi.

The m Shape Context vectors describe the whole symbol.
Shape contexts are invariant to translations and can be
modified to be scale and rotation invariant [3]. In case of
mathematical symbols, the rotation can be misleading, e.g.
confusing ∪ and ∩. To deal with small symbols the SC are
computed by counting all the points belonging to each bin
instead of considering only the points in P [4].

The subsequent steps of the process (Fig. 1) are the
clustering and the indexing. The comparison between the
shape contexts can provide a very accurate evaluation of
the similarity between symbols. However, the computational
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Figure 1: Schema of the mathematical symbol retrieval process. Indexed symbols are represented with Shape Contexts that
are then clustered with an SOM map. The indexing is made by computing the occurrences of SCs in the SOM units.

cost of a pairwise comparison is excessive and cannot be
considered when dealing with large data-sets. One solution
of this problem relies on a symbol representation that ex-
ploits techniques adopted in the vector space model of Infor-
mation Retrieval. One vector quantization is first performed
by clustering (in most cases with K-means) the SCs and then
labeling each SC with the index of the cluster it belongs to.
Following the textual analogy, each cluster is considered as a
“visual-word” and each symbol is represented on the basis of
the frequencies of each “visual-word” in its description [5].

In this work we use the Self Organizing Map (SOM)
to perform the vector quantization [2]. In contrast with K-
means, the SOM clusters are topologically ordered and more
similar shape contexts are mapped on close neurons in the
map. The symbol Si is then represented as a vector Vi of
size C (the number of SOM units) whose elements contain
the occurrences of SCs in each cluster. According to the
vector space model, the indexed dataset is often normalized
with the tf · idf weighting schema.

In Fig. 2 the indexing process is described starting from
the phase of symbol sampling and feature extraction, and
then showing how the visual dictionary, in this case the
SOM map, is used to assign each shape context to the
cluster it belongs to. From the portion of SOM shown on
the right we can notice that similar clusters are closer in the
two dimensional map. Each cluster is represented with its
centroid SC that is graphically depicted as a circular mask
where we fill the bins in the Shape Context with a gray level
that is darker for higher values in the corresponding SC bins.

Each cluster can be considered as one “visual-word” in the
visual dictionary and SCs in a symbol are labeled according
to this dictionary. Neighboring SOM units in the figure are
in general more similar, with smooth variations between
close units. For instance, centroids in the last row represent

SCs that correspond to lower corners (e.g. occurring in the
bottom of a ’V’). Moving from left to right we can notice
a smooth rotation of the represented corner.

III. SIMILARITY

The similarity between objects represented with the vector
space model is often computed with the cosine of the angle
between vectors (e.g. [6]). Alternative approaches have been
proposed for instance in [7] where the similarity is computed
by means of the Chi-square distance. The cosine similarity
is defined by:

sim(Vq, Vi) =

∑
j=1,C

vj,q · vj,i

| �Vq| · |�Vi|
(1)

where Vq and Vi are the query and a generic indexed
vector, respectively. One limit of this strategy comes out
when very similar SCs are mapped on similar, but different,
clusters.

To take advantage of the SOM topology we recently
proposed some changes to this similarity [2] [4] that are
shortly summarized in the following. The basic idea is to
allow a partial match for elements (vj,q) of Vq that have no
counterpart in Vi. In this case we look for elements in Vi that
correspond to neighbors of Vj,i in the SOM. The modified
similarity sim’ can be expressed by:

sim′(Vq, Vi) = sim(Vq, Vi) +

+

∑
(j|vj,i=0)

vj,q · F (vj,i)

α

| �Vq| · |�Vi|
(2)
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Figure 2: Example of the vector quantization process. On the left some points in P are shown. For each of the n points a
Shape Context is computed and then assigned to one SOM unit. In the SOM, closest units correspond to most similar SCs.

where α is an empirical parameter and F (·) is a function
that returns one unit vw,i among the four (or eight) nearest
neighbors of vj,i. This addend of sim′ is considered for each
element j such that vj,q �= 0 and vj,i = 0. There are four
variants of sim′. In the similarity called simS4 (simS8) we
analyze the 4 (8) neighbors of vj,i. F (vj,i) returns the value
vw,i of the unit w in the SOM neighborhood of unit j with
the highest vw,i. In this case α = 4 (or α = 8).

The similarity called simE4 is computed analyzing the 4
neighbors of vj,i, but in this case F (vj,i) returns the value
vw,i of the unit w in the SOM neighborhood of unit j with
the minimum distance in the R

C vectorial space with respect
to vj,i. An extension to the eight neighbors, called simE8

has been considered as well. In the latter two similarities we
have α = 4.

IV. EARTH MOVER’S DISTANCE

In this work, we propose to use the EMD to compute the
similarity for SOM-based clustering. This distance is com-
pared to the cosine similarity and to its variants explained
in detail in [8].

The Earth Mover’s Distance (EMD) is a method to
evaluate the dissimilarity between two multi-dimensional
distributions which are often used in computer vision to
summarize different image features [9]. In image retrieval an
image can be represented, for instance, by the distribution
of pixel intensities. These distributions can be summarized
with clustering algorithms, which reduce the feature space
in a fixed number of bins. Each cluster cj is associated with
a weight wj that indicates the size of the cluster (e.g. the
occurrences of features in each cluster). The EMD describes
the cost that must be paid to transform one distribution

(considered as a mass of earth spread in space) into the other
(considered as a collection of holes in the same space). The
EMD measures the least amount of work needed to fill the
holes with earth, considering that a unit of work corresponds
to transporting a unit of earth by a unit of distance (ground
distance). The EMD evaluation is based on the solution of
the transportation problem which consists in finding the least
expensive flow from one distribution to another according to
some constraints.

In a more formal way we can express the transportation
problem as follows [10]. Let S = {ws1 , . . . , wsm} be the
first distribution with m elements si ; Q = {wq1 , . . . wqn}
be the second distribution with n elements; and D = [dij ] be
the ground distance matrix where dij is the distance between
the element si and qj .
The flow F that minimizes the overall cost is computed by
Eq. (3) where fij is the flow between si and qj .

F =

m∑
i=1

n∑
j=1

fij · dij (3)

and it is subjected to the following constraints:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fij � 0 for 1 � i � m, 1 � j � n
n∑

j=1

fij � wsi for 1 � i � m

m∑
i=1

fij � wqj for 1 � j � n

m∑
i=1

n∑
j=1

fij = min(
m∑
i=1

wsi ·
n∑

j=1

wqj )

(4)
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The first constraint indicates that the items can be moved
only from S to Q and not vice versa. The next two constraints
are related to the amount of mass which can be sent from
the elements in S (it must not exceed the weight values)
and to the amount which can be received by elements in
Q (again limited by the weights). The last constraint forces
to move the maximum amount of mass as possible. After
solving the transportation problem and computing the total
flow F, the EMD is defined as the work normalized by the
total flow:

EMD(S,Q) =

m∑
i=1

n∑
j=1

fij · dij
m∑
i=1

n∑
j=1

fij

(5)

The EMD is a robust method to compare multidimen-
sional distributions of features. It is a true metric if the
ground distance is metric and if the total weights of the
two signatures are equals.

The choice of the ground distance depends on the prob-
lem. For instance, in [9], Rubner et al. propose to use the
Euclidean distance in the CIE Lab color space as measure of
similarity among colors, and the Euclidean distance in the
log-polar space to compare texture features in the frequency
domain.

In this work we use the EMD distance to measure the
similarity between the vector representations of mathemati-
cal symbol images that are obtained by SOM clustering of
SC. The ground distance is based on the distance between
SCs and is computed on the SOM map to take into account
the SOM topology. The occurrences of SCs in each vector
represent the weight as described in Eq. (5).

In our experiments we considered three ground distances
to be applied on the map. Let (xi, yi) and (xj , yj) be the
coordinates of the centroids ci and cj in R

2 in the SOM.
We considered:

• The Euclidean distance (L2):

d(i, j) =
√
(xi − xj)2 + (yi − yj)2 (6)

• The squared Euclidean distance (L22):

d(i, j) = (xi − xj)
2 + (yi − yj)

2 (7)

• The Euclidean distance between centroids ci and cj in
R

C (L2E) where C is the dimension of the feature

vectors:

di,j =

√√√√ C∑
k=0

|cik − cjk |2 (8)

To bound the influence of farthest units, when d(i, j) >
Dmax we set d(i, j) = D where D is an high value (e.g.
D = 100).

V. EXPERIMENTS

In our experiments, we used the Infty-CDB3 dataset
gathered in the context of the Infty Project [11]. Infty-
CDB3 is a collection of isolated alphanumeric characters
and mathematical symbols, splitted into two data sets that
contain a total of 259, 389 patterns.

Before indexing the data, we computed the SC clusters
on a set of 22, 923 symbols, belonging to 53 pages ran-
domly selected from the whole dataset. From each symbol
we extracted around 50 SCs so that we used a total of
1, 102, 049 feature vectors for clustering. We then indexed
all the 259, 357 symbols in the two datasets (very small
symbols have been removed from the collection). In some
preliminary tests we compared alternative approaches that
can be used to index the data and build the SOM [4]. In the
tests discussed in this paper, we used, without re-training,
the SOM obtained from these experiments [4].

The experiments have been carried out to compare the
results obtained with the EMD distance, applied to the SOM
map, with the cosine similarity and its modified versions.
The retrieval has been performed on 392 random queries.
The Precision at 0% Recall (that is obtained by interpolation
of the P-R plot) and the area under the P-R plot are reported
in Table I for various cases. sim is the cosine similarity,
simE4 is the best method among those not using the EMD
(Section III). For the EMD-based similarity, the three ground
distances have been tested: L2 is the Euclidean distance,
L22 is the squared Euclidean distance, L2E is the Euclidean
distance between centroids. In addition, some experiments
have been performed with the tf · idf normalization (TF )
and some without this normalization (NTF ). In the results
summarized in the table, the notation D indicates the use of
the upper bound to the distance (Dmax = 5).

Table I: Precision at 0 % Recall and Area under the curve
(AUC) of Precision - Recall. See Table III for a summary
of acronyms.

Similarity PR 0 AUC

sim 97.86 2338.14
simE4 97.97 2362.45
L2 TF 97.25 2375.18
L2E TF 98.11 3297.85
L2E NTF 98.23 3313.17
L22 D NTF 95.58 2566.12
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By analyzing Table I we can notice that the best results
are obtained with L2E both with (L2E TF ) and without
(L2E NTF ) the tf · idf normalization. In all the cases the
AUC values are larger when using EMD with respect to the
other similarity measures. Considering the best EMD case
the AUC value has been improved of about the 40 % with
respect to the best results obtained with the other similarities.

To reduce the computational time with the EMD similarity
it is possible to consider a two-step retrieval. In the first
step the standard cosine similarity is considered. The top
100 elements of the ranked list are then re-ordered with a
refinement step that uses the EMD similarity. The results
of this experiment are shown in Table II. Even if it is not
possible to equalize the best result of Table I (obtained
using only the EMD similarity) we can improve in any cases
the results obtained with the cosine similarity. In particular
the results obtained with the cosine similarity simE4 are
improved of about the 2.16 %.

Table II: Results of the two phases retrieval. See Table III
for a summary of acronyms.

Step 1 Step 2 PR 0 Area

sim L2 TF 97.40 2338.76
sim L22 D NTF 97.22 2342.43
simE4 L22 TF 94.33 2293.70
simE4 L2 TF 97.36 2358.62
simE4 L2E TF 98.10 2421.08

Table III: Acronyms used in the experiments.

Acronym Similarity Measure

sim Standard cosine similarity: Eq. 1.
simE4 Similarity computed with Eq. 2.
L2 TF EMD with Euclidean distance;

tf · idf normalization.
L22 TF EMD with squared Euclidean distance;

tf · idf normalization.
L2E TF EMD with Euclidean distance between centroids;

tf · idf normalization.
L2E NTF EMD with Euclidean distance between centroids;

no tf · idf normalization.
L22 D NTF EMD with bounded squared Euclidean distance;

no tf · idf normalization.

VI. CONCLUSIONS

In this paper, we described the integration of the Earth
Mover’s Distance with a bag of visual word representation of
symbols based on SOM clustering. This procedure is applied
to a problem of mathematical symbol retrieval. With the
proposed approach we can take advantage of the topological
organization of SOM clusters and find a correspondence
between similar but not identical visual words in different

indexed symbols. The distance between SOM clusters is
used as ground distance in the EMD algorithm.

We are now testing the EMD-based approach on other
domains such as writer identification with promising results
that confirm the findings reported in this paper.
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