
Fringe Map Based Text Line Segmentation of Printed Telugu Document Images

Vijaya Kumar Koppula∗†
∗Department of CSE

CMR College of Engineering & Technology
Hyderabad 501401, India
vijaykoppula@gmail.com

Atul Negi†
†Department of CIS

University of Hyderabad
Hyderabad 500046, India

atul.negi@ieee.org

Abstract—Text line segmentation is a crucial and important
step which can greatly influence the accuracy of an OCR sys-
tem. One of the major obstacles to building high-accuracy OCR
systems for Indic scripts has been the text line segmentation
problem. In particular for Telugu script this problem is still
to be adequately addressed by research. The common methods
of Roman script are not applicable due to the inherent script
complexity of Telugu. Previous approaches to Telugu OCR in
the literature take a simplified view of the problem, leading
to errors in line segmentation. The problem is compounded
in old documents that are typeset manually and have non-
uniform print quality. In this work we propose a new method
using the fringe map concept. In a fringe map each pixel of the
binary image is associated with a fringe number that denotes
the distance to the nearest black pixel. We use fringe value
information to segment text lines. First we locate peak fringe
numbers (PFNs). PFNs that are not between lines are filtered
out. PFNs between adjacent lines are used to construct a region.
The segmenting path between the adjacent lines is found by
joining the filtered PFNs of a region.

Keywords-Text line segmentation, Indic scripts, Telugu OCR,
Fringe Maps

I. INTRODUCTION

In a practical Telugu OCR system we observe that on

several occasions poor performance was not due to failure

of the classifier but due to inaccurate text line segmentation.

Text line segmentation in printed Telugu documents is quite

challenging due to linguistic complexity, non uniform print

quality and primitive typesetting.

Telugu is a very complex script with large number of

vowels, consonants, and various different combinations of

vowels and consonants. A Telugu character may be either

simple i.e., a single consonant or vowel, or compound,

i.e., a combination of a basic consonant with consonant

modifiers and/or vowel modifiers [1], [2], [3]. Examples

of Telugu base characters and their phonetic variants are

shown in Fig. 1(a). In Fig. 1(b) observe the orthographic

properties of the components. Here consonant modifiers may

be placed to either side around the base consonant. In many

cases the consonant modifiers and vowel modifiers occupy

adjacent lines with overlapping of line MBRs. A sample of

Telugu text with a bounding rectangle around it and spatial

distribution of components is shown in Fig. 2 where the

dotted lines show an overlap of the line MBRs. Telugu

Figure 1. (a) An example of Telugu characters and Positional distribution
of Vowels, Consonants and Consonant Modifiers (b) Lower, Middle and
Upper zone example of Telugu script.

documents rarely contain a constant clear spacing between

text lines due to variations in spatial distribution of the

components. This is one of the reasons that the conventional

line segmentation methods fail on Telugu documents. Due

to the positional variation of a modifier component, the task

of assigning it to a line above it or below has difficulty.

Here we show an example from the Digital Library

of India (http://www.new.dli.ernet.in) which were typeset

by hand using primitive techniques and non-uniform print

quality. Hence it is difficult to specify a consistent distance

between in some components. The non-uniform print quality

Figure 2. Telugu text with line MBRs and Spatial distribution of
components

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.260

1294

Figure 3. Projection Profiles and RLSA methods applied on image in Fig.
2.

documents may cause touching of components across lines.

Conventional text line segmentation methods like projec-

tion profiles, connected components and run length smearing

do not work well on Telugu printed documents. Fig. 3(a)

shows projection profiles of the lines from Fig. 2. Fig. 3(b)

shows results of applying Run-Length Smearing Algorithm

(RLSA) on Fig. 2, both of which show a poor result.

The proposed text line segmentation method in this paper

is based on fringe maps [4]. Its aim is to find a segmenting

path (curve) between two adjacent lines and separate them.

Our motivation is to use an approach that is based on white

space to guide the segmentation, much as a human reader

follows the lines and views the gaps between the text to

separate them. We do not attempt to enforce artificial boxes

that force the rectangular notion of conventional approaches.

In the remaining part of the paper, first, we take up

in section II a review of some related works. Text line

segmentation using fringe maps is explained in section III.

We explain the proposed text line segmentation method in

section IV. We conclude in section V.

II. RELATED WORK ON TELUGU TEXT LINE

SEGMENTATION

Projection-profile based methods have been one of the

most popular top-down algorithms for printed documents.

The projection profile is obtained by summing object pixel

counts along each row, where the white space between the

text lines is used for segmentation. This works provided

that the spacing between two neighboring text lines is

distinct. However, this method cannot be directly used in

printed Telugu documents unless white space between two

neighboring text lines is quite large. This method was used

in previously published work [2]. Telugu text usually shows

a projection profile with varying inter-peak and inter-valley

distances. More than one peak is usually present within

a single row of text [1]. This factor make the projection

profiles prone to errors in identifying lines.

In RLSA consecutive black pixels along the horizontal

and vertical directions are smeared. If the distance between

the white space is within a predefined threshold, it is filled

with black pixels. The bounding boxes of the connected

components in the smeared image are considered as text

lines. Negi et al [5] used RLSA based method for text line

extraction with vertical and horizontal thresholds to extract

words. Vertical smearing was used to join a consonant

modifier with the related base character above it. Vertical

smearing may join consonants and the vowel modifiers

of lines that are close. Practically as seen in Fig. 3(b)

components of adjacent lines join up because of overlaps

between lines and also due to marginal skew.

Koppula et al [6] proposed an approach that uses dis-

tance metrics between connected components for text line

extraction in Telugu documents. It showed relatively better

performance on the documents with text lines which are

closely spaced. However it does not do too well in cases

of overlapping and skew, and may lead to wrong merging

of connected components. The methods for other Indic

scripts such Tripathy and Pal, also Pal and Datta [7], [8]

used piece-wise projection method in text line segmentation.

The document is divided into vertical stripes. Analysis of

”water reservoirs” obtained from different components of

the document is used to find the width of a stripe [8].

Stripe-wise horizontal histograms are then computed and

the relationship of the histograms peak-valley points is used

for line segmentation. This approach gave peculiar errors

for Telugu script. Since in Telugu, characters are made up

of more than one connected component. The white space

between consonant and consonant modifiers misleads the

piece-wise projection methods. Kumar et al. [9] proposed

a graph cut based method for Telugu text line segmentation

which can avoid being misled but this method needs apri-

ori estimates of line segmentation followed by substantial

training information of the script structure to cut accurately.

Here instead we have a direct approach as described in the

following section.

III. TEXT LINE SEGMENTATION USING FRINGE MAPS

Originally as proposed by Brown [4] the concept of fringe

distances was used to recognize characters. Fringe maps

were first used in Telugu OCR to recognize characters [5].

In our recent work we introduced the concept of fringe maps

with application to text line segmentation [10]. However

there the approach was preliminary and now in this paper

we present a refined and more robust technique as shown in

the following sections. For completeness we start from the

fringe map concept and then bring in issues related to line

segmentation using fringes.

A. Fringe maps

The concept of fringe maps is related to distance trans-

forms [11] for binary images. In a fringe map [4] each pixel

1295

Figure 4. (a) Telugu character ’KA’ (b) Fringe map of image (a) and Peak
Fringe Number in circle

is represented with a fringe number. Every print (black)

pixel has a fringe number of zero. Background (white) pixels

have a fringe number which is a positive integer, that is the

distance from the nearest black pixel using a L2 metric. In

other words, A white pixel with fringe number x states that:

1) It is x pixels away from its nearest black pixel.

2) It is surrounded by atleast (x-1) white pixels in all

directions.

For us the second point is very useful. It helps us to

quantify the white spacing between the components in the

image. Assuming input to be normal binary images where

the printing or writing is dark and background is light, so

black pixels or the writing is represented as ’0’ and white

pixels are set to a value ’-1’. To generate a fringe map for

the input binary image we start by examining each neighbor

of each black pixel, and write a value of ’1’ into each

neighbor which is a white pixel (-1). Horizontal, vertical,

and diagonal neighbors are examined. Having done this, we

examine each neighbor of each pixel with a ’1’ in it, and

write ’2’ in the neighbors that are ’-1’. We continue growing

fringes and incrementing fringe counts until there are no

more ’-1’ value pixels. For example we take the Telugu

character ’KA’ Fig. 4(a) and its fringe map is shown in Fig.

4(b).

B. Fringe Map generation and Definition of PFN

Fringe map is generated for the given input binary image.

In a fringe map, each pixel is represented with a fringe

number. We use maxima of fringe numbers to find white

pixels between lines. This is made more formal using the

PFN denition.

Definition: PFN. In a fringe map, Peak Fringe Number

(PFN) is defined as a maximum positive fringe number

(white pixel) enclosed between two zeros (black pixels) in

the direction of interest. For example a PFN is shown in

Fig. 4.(b), where the direction of interest is in the vertical

direction.

Figure 5. (a)All PFNs of an image are shown in shade (b) Fringe map
and PFNs of selected portion of image in Fig. 5(a), PFNs between lines
are shown in rectangular box

Figure 6. Zoomed part of rectangular box from Fig. 5(b)

However when we compute the map for an entire page we

see more interesting things. We find PFNs in the fringe map

for a given binary image where the direction of interest is

vertical because we assumed the text runs in a horizontal

direction. The PFNs are present at various locations in

the fringe map. We observe that some PFNs are located

inside the connected components of character objects, some

between the components of a line and some between the

components of adjacent lines. Fig. 5(a) shows all PFNs

superimposed over the image from Fig. 2 and Fig. 5(b)

shows fringe map and PFNs of selected portion of image

in Fig. 5(a). Fig. 6 shows a zoomed part of rectangular box

from Fig. 5(b). The PFNs between the lines are shown within

the rectangular box. We are interested in PFNs between the

lines. Using these PFNs we can generate a segmenting path.

The other PFNs need to be filtered out. It must be noted that

some parts of the image where there are no black pixels in

the direction of interest do not have a PFN.

C. Fringe maps based text line segmentation using window
approach

In our previous work [3] we proposed a generic method

using fringe maps for segmentation of text lines using a

window approach. This method segments lines in three

stages. The first stage generates a fringe map for the given

1296

Figure 7. (a) Fringe based method for text line segmentation using window
approach applied on image in Fig. 2. (b) Zoomed part from Fig. 7(a)

input binary image. In the second stage, PFNs are located

in the fringe map. A filtering operation on the PFNs is

performed. Then the filtered PFNs between text lines are

determined. In the last stage, a segmenting path between

lines is generated by joining the PFNs. This method was

doing well most of the time, but failed to segment text lines

of Telugu script in certain cases where: 1. Non-constant

space exists between text lines due to spatial variation of

the components. The filtering operation leaves a huge gap

between the PFNs. Then determining which PFNs belong

to the adjacent line is very problematic. 2. A static window

approach for joining PFNs is used to generate segmenting

path. The space between words misleads the direction of the

path.

Fig.7 shows the results of a fringe based method for text

line segmentation using this window approach. The segment-

ing path changed direction at the marked box because the

space between words is wide and the gap between the lines

is narrow. Window size is a parameter than can control the

path, and prevent the PFNs of adjacent line from merging.

The PFN filtering operation at times leaves a huge gap

between PFNs. Thus all of these factors make this method

prone to errors in generating a segmenting path. Although

this problem can be solved by the right window size but

then that needs customization. In the method proposed here

we overcome such problems.

IV. PROPOSED METHOD

The proposed algorithm for text line segmentation of

Telugu document images consists of three major steps as

shown in Fig. 8. The first step generates a fringe map for

Figure 8. Bloack diagram of Proposed text line segmentation method

the given input binary image. In the second step, Peak fringe

numbers (PFNs) are located in the fringe map. The PFNs

between text lines are determined by performing a filtering

operation. At this stage identifying PFNs that belong to

an adjacent line and to generate a segmenting path is not

easy because the filtering operation leaves gaps. Hence a

broad region is constructed in such away that it covers the

consonant modiers of a line and vowel modiers of next

line (the overlapping and touching components of adjacent

text lines). These regions cluster the PFNs between adjacent

lines. In the last step, a segmenting path between lines is

generated by joining the PFNs of a region.

A. Locating PFNs between lines and constructing regions

We scan the fringe map along columns and locate the

PFNs. The PFNs may be present inside the connected

component or between the connected components within a

line of text or between the lines as shown in Fig. 5. We are

interested in only the PFNs between the lines through which

we can find a segmenting path between lines. Generally, we

observe that the values of PFNs which are between the lines

are greater than the values of PFNs with in a line either

inside or outside the connected components. We used this

observation to separate the PFNs, and distinguish between

those PFNs that we need. A simple threshold value, say

T, which is the arithmetic mean of all the PFNs is used

to separate the required PFNs as shown in Fig. 9. Now

determining the PFNs between the adjacent lines is an issue

due to large gaps between the PFNs. This may be due to

filtering operation upon PFNs or non existence of PFNs in

vertical direction at that location.

Note that joining of PFNs of two different adjacent

lines leads to a wrong segmentation. Therefore we need

to construct a region using PFNs through which we can

determine the PFNs of adjacent lines. A region is constructed

in such a way that it covers the consonant modiers of a

line and vowel modiers of next line using PFNs. The PFNs

within a region are clustered and used for segmenting path

generation in next subsection. We scan the fringe map along

columns and search the PFNs. Let a PFN point P, be at

location (i,j), ith row and jth column, with a fringe value

x then region is constructed with following boundaries: Top,

as (i - x), Bottom as (i + x) , Left bound is extended towards

left up to a black pixel (fringe value is zero) along the row

Figure 9. Filtered PFNs are shown in shade, gaps between PFNs are
shown in circles

1297

Figure 10. Regions and filtered PFNs

i from the current column j, and Right bound is extended

towards right up to a black pixel (fringe value is zero) along

the row i from the current column j . Union of these regions

gives a broad region between adjacent text lines as shown

Fig. 10.

B. Segementing Path Generation between Two Text Lines

Now a segmenting path that separates adjacent text lines

is generated by joining the PFNs in a region. We scan the

fringe map along columns from left to right and search for

PFNs and build a segmenting path. We construct a path for

a given point (PFN) at a position (i,j) by adding any points

immediate to it. Now beyond this we don’t find any points

immediately that could be added to the path straight away.

However there is another PFN in the neighborhood where

the path may continue. The issue is to find a local connection

between these points. These sets of points need to be joined

to the path. Now consider a point P at a position(i,j) and

neighboring point Q at a position (m,n) then search for a

point in each column from (j + 1) to (n - 1) in the region.

The search is done along the column from current position

to the top of the region, or top black pixel (fringe value zero)

and bottom of the region or bottom black pixel to select a

point. The point is selected such a way that it should be

nearest to the point Q. Fig. 11 shows results of segmenting

path generated between the adjacent text lines. Notice the

correct direction of the segmenting path in the boxed regions

as compared to Fig. 7.

V. RESULTS AND CONCLUDING REMARKS

Experimentation showed that the proposed method per-

formed obviously better as compared to the conventional text

line segmentation methods such as the projection profiles,

run length smearing and connected component algorithm. To

get some statistics the method was tested on 234 images. It

Figure 11. Result of Proposed method on image from Fig. 2.

was seen to be accurate with a percentage of 97.24 correct

segmentation. Thus the proposed novel fringe map based

technique for text line segmentation of printed Telugu script

was seen to do well. We plan to test this against a larger

corpus of test images and bring out a more quantitative

comparative evaluation.

Acknowledgment The authors thank the Ministry for

Communications and Information Technology (MCIT), New

Delhi, Government of India, for the test corpus collected

under the grant No. 14(6)/2006-HCC(TDIL).

REFERENCES

[1] C. Bhagvati, T. Ravi, S. M. Kumar, and A. Negi, “On
developing high accuracy OCR systems for Telugu and other
Indic scripts,” in Proc. Language Engineering Conference
(LEC’02), Hyderabad, India, Dec. 2002, pp. 18–23.

[2] C. V. Lakshmi and C. Patvardhan, “An optical character
recognition system for printed Telugu text,” Pattern Analysis
and Applications, vol. 7, no. 2, pp. 190–204, July 2004.

[3] A. Negi, K. Shanker, and C. K. Chereddi, “Localization, ex-
traction and recognition of text in Telugu document images,”
in Proc. ICDAR, Edinburgh, Scotland, Aug 2003, pp. 1193–
1197.

[4] R. L. Brown, “The fringe distance measure: an easily calcu-
lated image distance measure with recognition results compa-
rable to Gaussian blurring,” IEEE Trans. Syst., Man,Cybern.,
vol. 24, no. 1, pp. 111–115, 1994.

[5] A. Negi, C. Bhagvati, and B. Krishna, “An OCR system for
Telugu,” in Proc. ICDAR, Seattle, USA, Sep 2001, pp. 1110–
1114.

[6] V. K. Koppula, A. Negi, and U. Garaini, “Robust text line,
word and character extraction from Telugu document image,”
in ICETET, Nagpur, India, Dec 2009, pp. 269–272.

[7] N.Tripathy and U.Pal, “Handwriting segmentation of uncon-
strained Oriya text,” in Proc. International Workshop on
Frontiers in Handwriting Recognition, Kolkata, India, Oct
2004, pp. 306–311.

[8] U.Pal and S.Datta, “Segmentation of Bangla unconstrained
handwritten text,” in Proc. ICDAR, Edinburgh, Scotland, Aug
2003, pp. 1128–1132.

[9] K. S. S. Kumar, A. M.Namboodiri, and C. V. Jawahar,
“Learning segmentation of documents with complex scripts,”
in Proc. 5th Indian Conference on Computer Vision, Graphics
and Image Processing, Madurai, India, Dec. 2006, pp. 749–
760.

[10] V. K. Koppula and A. Negi, “Using fringe maps for text line
segmentation in printed or handwritten document images,”
in 2010 Second Vaagdevi International Conference on In-
formation Technology for Real World Problems (VCON’10),
Warangal, India, Dec 2010, pp. 83–88.

[11] R. Fabbri, L. da F. Costa, J. C. Torelli, and O. M. Bruno,
“2d Euclidean distance transform algorithms: A comparative
survey,” ACM Computing Surveys., vol. 40, no. 1, 2008.

1298

