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Abstract—One of the main challenges in off-line signature
verification systems is to make them robust against rotation of
the signatures. A new technique for rotation invariant feature
extraction based on a circular grid is proposed in this paper.
Graphometric features for the circular grid are defined by
adapting similar features available for rectangular grids, and
the property of rotation invariance of the Discrete Fourier
Transform (DFT) is used in order to achieve robustness against
rotation. A Support Vector Machine (SVM) based classifier
scheme is used for classification tasks. Experimental results
on a public database show that the proposed verification
system has a performance comparable to similar state-of-the-
art signature verification systems with the additional advantage
of being robust against rotation of the signatures.
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I. INTRODUCTION

Signature verification plays an important role in the field
of personal authentication, being the most popular method
of identity verification. Financial and administrative insti-
tutions recognize signatures as a legal means of verifying
an individual’s identity. In addition, signature verification is
a noninvasive biometric technique, and people is familiar
with the use of the signatures for identity verification in
their everyday life. Two different categories of signature
verification systems can be distinguished: off-line and on-
line systems [1].

The aim of a signature verification system is to accurately
distinguish between two categories of signatures, namely,
genuine and forged signatures. Different types of classifiers
have been applied to solve this classification problem, being
those based on Hidden Markov Models (HMMs) ([2]-[5]),
and Support Vector Machines (SVMs) ([4]-[7]), among the
most frequently used. HMM-based classifiers have shown to
be well suited for signature modeling since they are able to
capture personal variability ([3], [4]). More recently, SVM-
based classifiers have been successfully used in signature
verification applications ([5]-[7]) since they have the ability
to work with high-dimensional data, they provide high
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generalization performance without the need to add a priori
knowledge and, in general, this generalization performance
is better than that of other classification methods when the
amount of data is small.

A fundamental step in a signature verification process is
the feature extraction. Different methods have been proposed
in the off-line signature verification literature to perform
the extraction of the features from the signature image.
Generally, the features can be classified into two categories,
namely, global features and local features. Global features
refer to those that are representative of the whole signature
image, while local features are those extracted from particu-
lar parts of the signature image. Grid segmentation schemes
have been frequently used to compute local features. In
addition, features used in graphology, called graphometric
features [8], have been adapted to compute them resorting
to grid schemes. Different grid-segmentation schemes have
been used in off-line signature verification systems for the
purposes of graphometric feature extraction. In [2], [3], [5],
[8] and [9], graphometric features are computed resorting
to a rectangular grid scheme. In [10], a segmentation of
the signature image using a circular grid is proposed, and
graphometric features are adapted to this grid geometry.
One of the motivations for using a circular grid is to avoid
the problem of having empty sectors which appear when a
rectangular grid is employed. The ideal gridding technique
would be to compute a bounding ellipsoid of the signature
and to divide it into sectors, but then no regular sectors
would result. The bounding circular grid, instead, allows the
division in regular sectors. A comparison between the circu-
lar and the rectangular grid approaches for feature extraction
is performed in [10], showing the verification system based
on circular grids better performance than the corresponding
one based on rectangular grids. These gridding schemes,
however, are not robust against rotation of the signatures.
Robustness against rotation is one of the major challenges
when dealing with off-line signature verification systems.
This problem has not been extensively dealt with in the
literature. In this paper, a representation of the signature that
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is robust against rotation is proposed. In this representation,
graphometric features are extracted from a circular grid and
mapped to the Fourier Transform domain in order to achieve
robustness against rotation. Similar techniques have been
proposed in [11] and [12].

The verification process is carried out resorting to a
SVM-based classifier and the above mentioned graphometric
features in the Fourier Transform domain. The system is
tested on a public database containing genuine as well as
forged signatures.

The paper is organized as follows. The proposed rotation
invariant feature extraction approach based on a circular
grid is described in Section II. Section III is devoted to the
SVM-based classifier. Experimental results are reported in
Section IV. Finally, some concluding remarks are given in
Section V.

II. FEATURE EXTRACTION

In this paper, a circular chart enclosing the signature is
divided in N identical sectors, and graphometric features are
computed for each sector. Since dimensions of signatures
belonging to different writers, or even the same writer,
may differ, a width normalization of the signature image
is performed before gridding. This normalization maintains
the original height-to-width ratio of the signature image. The
circular grid is centered at the center of mass of the binary
image of the signature as shown in Fig. 1(a). In this way,
the probability of having empty grid sectors is reduced. In
addition, this choice of the center of the grid guarantees
invariance against translation of the signature.

Three static graphometric features are considered: pixel
density distribution xpp, gravity center distance xpac and
gravity center angle x og¢, defined as:
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between the gravity center (point A in Fig. 1(b)-(c)) and the
center of the grid, R is the radius of the grid calculated as the
major distance between extreme points of the signature, agc
is the angle of the gravity center (as depicted in Fig. 1(c))
and au,q. 1S the total angle of each sector. Note that due
to the particular choice of the grid center and the grid
radius, the features (1), (2) and (3) are translation and scaling
invariant. Let the graphometric features for the ith sector of
a signature Sy be defined as in (1), (2) and (3). The ith
sector of the grid is delimited by the angles 2ir/N and
2(i + 1)m/N. A generic feature calculated inside the ith
sector of Sy can be expressed as
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Figure 1.
grid approach: (a) Segmented sector being analyzed; (b) Gravity Center
Distance; (c¢) Gravity Center Angle.

Features extracted from segmented sectors with the circular

withi=0,--- N — 1.

Suppose now that the same features are calculated inside
the same ith sector of a rotated version of S, namely,
S,(0) = So(0 — p) where the rotated angle is p = k27 /N

radians with £ = 1,2,--- , N in counterclockwise direction.
The corresponding feature is given by
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From (4) it can be concluded that the features of the
rotated signature are circularly shifted with respect to the
corresponding features for the original signature.

Finally, the features of the original and rotated signatures
are obtained by taking the N-point Discrete Fourier Trans-
form (DFT) of xg, and x,, respectively. That is
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withu = 0,--- , N—1. It s clear then that X ,(u) and X (u)
have the same absolute value, that is | X, (u)| = | Xo(u)], and
then [|Xo(0)[,---,|Xo(N —1)|]T is a feature vector which
is invariant against rotation. In addition, since the spectrum



is symmetric at the central point, it is enough to keep the
first N/2+ 1 values of the DFT for the representation of the
signature.

Finally, the scaling, translation and rotation invariant
feature vector X4, is defined as

Xsign = [Xbp: Xbaer Xhaels (7
where
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IIT. SUPPORT VECTOR MACHINE CLASSIFIER

Support Vector Machine is a quite recent technique of
statistical learning theory developed by Vapnik ([13], [14]).
Given a set of samples belonging to two classes, a SVM
classifier tries to find the hyperplane that maximizes the
distance to either class, minimizing the misclassification
error. Although in their basic form SVMs were developed
for the purpose of learning linear threshold functions, they
have been extended to the nonlinear case by means of
the use of kernels. Several kernels have been proposed in
the literature for SVM-based classifiers ([15], [16]). In this
paper, the widespread-used linear, polynomial and Radial
Basis Functions (RBF) kernels are considered.

Recently, SVM-based classifiers have been used in au-
tomatic signature verification showing a promising perfor-
mance as pointed out in [5], [6] and [7], among others.
In these works, comparisons between SVM-based classi-
fiers and other classification methods like Artificial Neural
Networks (ANNs) ([6] and [7]) and HMMs [5] have been
carried out, showing the SVM-based classifiers several ad-
vantages with respect to the other techniques. The SVM-
based classifiers in [5], [6] and [7] make use of different
feature extraction techniques. Rectangular grid features are
used in [5], global, mask and grid features are used in [6],
while global and moment-based characteristics are employed
in [7]. In this paper, the SVM-based classifier is used
together with the rotation invariant features described in
Section II.

The database used to test the performance of the pro-
posed signature verification system, described in detail in
Subsection IV-A, includes genuine as well as forged signa-
tures. For the latter, random, simple and skilled forgeries
are available. Random forgeries are usually represented as
genuine signatures that belongs to anyone else but the writer
under consideration. Simple forgeries are represented by
signatures that have the same semantic of the writer’s name
without any knowledge about the original signature image.
Skilled forgeries are represented by a trained imitation of
the original signature. A SVM model was trained for each
writer using a training set composed of genuine and false
samples. The genuine samples were chosen as a subset of
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the available writer’s genuine signatures. The corresponding
false samples, were chosen as a subset of the genuine
signatures (the ones separated for training purposes) of the
remainder writers in the database. This set of signatures
can be interpreted as random forgeries for the writer under
consideration. Neither simple nor skilled forgeries were
included in the training subset of false samples. For a real
application, those types of forgeries are not available during
the training phase. Then, avoiding their use for training
results in a more realistic model.

To verify a signature, that is to verify the identity claimed
by a writer, the feature vector (which is calculated as
described in Section II) is used as the input of a SVM
classifier trained for the writer under consideration. The
SVM classification process will determine whether the sig-
nature belongs to the genuine class or to the false class.
Then, the signature will be assumed as genuine and the
writer’s claimed identity will be true if it belongs to the
first class, otherwise the signature will be considered as
a forgery assuming the claimed identity to be false. The
signature verification experiments were performed resorting
to the SVM toolbox for Matlab described in [17].

1V. EVALUATION PROTOCOL

A. Signature Database

The database used is GPDS300Signature CORPUS [18] .
This is a freely distributed version of the database described
in [4]. There are 160 writers enrolled in the database. For
each writer, there are 24 genuine signatures and 30 forged
signatures, taking into account simple and skilled forgeries.
That is, a total of 160 x 24 = 3840 genuine and 160 x
30 = 4800 forged signatures. For a writer in the database,
genuine signatures of all the other enrolled writers were used
as random forgeries.

B. Experiments and Results

The database was organized as follows: First of all, a
randomly selected subset of 30 out of the 160 writers was
separated and used for parameter optimization purposes.
This set of signatures was not used in the subsequent
training and testing phases. The remainder 130 writers were
organized as follows: The 30 forged signatures available per
writer were used exclusively for testing, while the 24 gen-
uine signatures available per writer were randomly divided
into two groups. The first one, containing 13 signatures, was
used for training purposes. The second one, consisting of 11
signatures, was used for testing. For each writer, the set of
training samples was composed of 13 genuine signatures and
129 random forgeries (1 genuine signature randomly chosen
from the 13 available for each of the 129 remainder writers).

I'The authors, in the License Agreement for non-commercial research use
of the database, required the database to be named as GPDS300Signature
CORPUS and that any work made public based directly or indirectly on
any part of the database has to include the reference [18].



The proportion of genuine samples to false samples used for
training was optimized over the optimization subset.

In order to obtain reliable results, Monte Carlo techniques
were used. The experiments were carried out randomly
resampling the dataset into training and testing sets for each
one of the 130 writers tested. The resampling process was
repeated 100 times.

Experiments were specially focused on testing the rotation
invariance property of the developed signature model. For
that purpose, the signature model trained in each Monte
Carlo instance, was tested over a dataset composed of the 11
original genuine signatures randomly chosen for testing, the
30 original forged signatures and rotated versions of both
testing groups. Signatures used for testing were rotated 10,
20, 30, 40, 50 and 60 degrees in a counterclockwise direc-
tion. Experiments with different number of grid divisions
N =8 N =16, N =32, N = 64 and N = 128, and
different types of kernels, namely, linear, polynomial and
RBF, were carried out. The internal parameters of the SVM-
based classifiers were optimized over the subset used for
optimization purposes. The best results, which are presented
in this section, were obtained with the polynomial kernel and
N = 16 grid divisions.

In order to show the improvements achieved by mapping
the features extracted from the circular grid to the Fourier
Transform domain, the same experiments were also carried
out with the features prior to the mapping. Fig. 2 shows the
mean value of the False Rejection Rate (FRR) (top) and the
False Acceptance Rate (FAR) for simple and skilled forg-
eries (bottom) calculated with the proposed rotation invariant
features (red) and the features prior to the mapping to the
Fourier Transform domain (blue), for the 130 writers tested.
The rotation invariant property of the proposed features in
the DFT domain can be clearly observed in Fig. 2. On the
other hand, the verification errors of the features prior to the
mapping to the DFT domain are strongly influenced by the
rotation angle of the signature.

In Fig. 3 the FRR (top) and the FAR for simple and skilled
forgeries (bottom) calculated with the proposed rotation
invariant features, for each of the 130 writers tested are
shown. From Fig. 3 it can be observed that the proposed
method has a good performance in terms of the FAR except
for only a few signatures while in terms of the FRR the
performance is not that good for some of the signatures.
Signatures for which the developed model is not well suited
are those which present long thin lines underlying the
signature which are too long with respect to the rest of the
signature’s body which, in these cases, is in an extreme of
the underlying line. For this type of signatures, the center of
mass of the signature is not a good choice for the circular
grid center resulting in a poor verification performance.

The lack of a standard international signature database
makes it difficult to compare the performance of the different
signature verification systems. For the sake of completeness,
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Figure 2. FRR (top) and FAR for simple and skilled forgeries (bottom)
calculated with the proposed rotation invariant features (red) and with the
features prior to the mapping to the DFT domain (blue).
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Figure 3. FRR (top) and FAR for simple and skilled forgeries (bottom)
calculated for each of the 130 writers tested (rotation invariant features).

results published in some related works are presented in
Table I, together with the corresponding results obtained
with the approach proposed in this paper. In particular,
Table I includes results from works that use a similar
database (160 writers, 24 genuine signatures and 24 forged
signatures) in which a polar representation of the image of
the signature is used to compute the characteristic features
([4], [19]) and from [10] which uses the same database.
Since no evaluation about the invariance property of the
features are available for [4] and [19], the results included
in Table I are the ones calculated for the original signatures
(without any rotation).

It can be observed from Table I that the proposed method
outperforms the methods of the state-of-the-art in [4], [10]
and [19], for both the False Rejection and the False Accep-
tance Rates.

It is the intention of the authors to improve the obtained
performance by introducing new features that take into
account some other human factors as pen pressure and ori-
entation. In addition, using unsupervised learning algorithms
to perform an automatic pre-classification of the signatures
according to their writing style and morphological aspect
is being evaluated in order to adapt the feature extraction
techniques to each identified signature class.



Table 1
COMPARISON BETWEEN THE RESULTS OBTAINED WITH THE PROPOSED
APPROACH AND OTHER APPROACHES PROPOSED IN THE LITERATURE.

FRR FAR EER
Proposed approach 7.82% 0.49% 4.21%
Parodi and Goémez [10] 19.8% 3.77% 11.785%
Ferrer et al.[4] 14.1% 12.6% 13.35%
Vargas et al.[19] 10.01% | 14.66% 12.33%

V. CONCLUSIONS

A new technique for rotation invariant feature extraction
based on a circular grid has been proposed in this paper for
off-line signature verification. A Support Vector Machine
based classifier scheme was used for classification tasks.
The classification results on a public database, quantified
by the FRR and the FAR for simple and skilled forgeries,
show that the proposed signature verification system has
a performance comparable to similar ones of the state-of-
the-art. In particular, the low FAR obtained indicates an
improvement in the capability of the system to highlight the
interpersonal variability. In addition, the proposed signature
verification system has the advantage of being robust against
the rotation of the signatures.
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