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Abstract—Segmentation of architectural floorplans is a chal-
lenging task, mainly because of the large variability in the
notation between different plans. In general, traditional tech-
niques, usually based on analyzing and grouping structural
primitives obtained by vectorization, are only able to handle a
reduced range of similar notations. In this paper we propose
an alternative patch-based segmentation approach working at
pixel level, without need of vectorization. The image is divided
into a set of patches and a set of features is extracted for
every patch. Then, each patch is assigned to a visual word
of a previously learned vocabulary and given a probability of
belonging to each class of objects. Finally, a post-process assigns
the final label for every pixel. This approach has been applied to
the detection of walls on two datasets of architectural floorplans
with different notations, achieving high accuracy rates.

Keywords-Graphics Recognition, Patch-Based Image Seg-
mentation, Architectural Floorplans.

I. INTRODUCTION

The interpretation of architectural drawings is an inter-
esting topic in the domain of graphical document analysis.
Many works have been addressed to this topic in the last ten
years. Some of them are focused on the interpretation of the
complete plan from printed designs to be able to reconstruct
them in 3D, as the one presented by Dosch et al. [1].
Others, with the same purpose, are doing 3D reconstructions
from sketches, as the one presented by Juchmes et al. [2].
But all of them need to vectorize the images to extract
the basic components of the walls, that are the basis of
the plan structure. That points out the importance of the
wall notation in all the recognition process. The problem
in this domain is the non-existence of a standard notation.
This implies a great variability in the notation of walls in
different plans. They can be formed by a single line of
different widths, two or many parallel lines or even hatched
patterns. Then, traditional techniques need to reformulate
the whole wall segmentation process for each new notation.
In this paper we propose a totally different approach to the
segmentation of the structural elements of a floorplan. The
approach is based on recent works on patch-based image
segmentation and object localization [3], [4], [5], [6]. In this
kind of approaches, the image is usually divided into a set
of patches. Every patch is described with a set of visual
features and these feature vectors are clustered into a visual

codebook. Then, using this representation, to every patch is
assigned a probability of belonging to each of the possible
objects according to some probability distribution learned
over a training set. Finally, this initial segmentation can be
refined taking into account the neighborhood of the patch
generally using Markov Fields.

In the domain of document analysis this kind of methods
have been applied to the problem of page segmentation
[4]. We have taken this work as a reference to develop a
method for the segmentation of architectural floorpans that
can overcome some of the problems of previous approaches
concerning variability on the notation of the floorplans.
Thus, the method can be easily adapted to work with several
notations, as the visual appearance of every structural ele-
ment under each different notation is automatically learned
by the codebook and the probability distribution of patches.
We only need to re-train the system with images of every
notation without need of changing the method itself, as it
happened in previous approaches. In the experiments section
we will show this adaptability of the method with two
different datasets of images with different notations.

This paper is organized as follows. In section II we present
our patch-based approach for three different grid topologies.
Then, in section III, we discuss the results obtained in two
datasets specifically created to evaluate our method. Finally,
the overall work is concluded.

II. METHODOLOGY

We have implemented a bag-of-patches approach for
object detection and recognition in architectural floorplans.
The pipeline of the process, which is shown in figure 1,
is slightly different for learning and testing. In both cases
there is a preprocessing step – that consists of binarization
and text graphic separation – and a common step for patch
extraction based on defining a grid over the whole image.
Three different topologies of grids have been considered.
After extracting features for every patch, in the learning
phase, a dictionary of representative patches is created by
clustering feature vectors. Then, to each word is assigned
a probability of belonging to every class of objects. In the
testing phase, each patch is assigned to the nearest word in
the dictionary, inheriting the class probabilities of the word.
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All the modules of our approach are explained extensively
below.

A. Image pre-processing – text-graphic separation

Textual information is likely to be found in architectural
floorplan documents as part of the building modeling, e.g.
name of the rooms, lengths, areas, etc. But at the moment,
we are not interested in text segmentation. Moreover, re-
sults obtained experimentally have shown that our method
performs better on plans where text has been previously
extracted. Therefore, using the well-known text graphic
separation algorithm presented in [7], textual information
is removed as a pre-processing step.

B. Grid topologies creation and feature extraction

Our main objective is to perform a pixel-level object
segmentation. However, using pixels as elementary units
involves a high computational cost, sometimes making the
problem infeasible in terms of speed. Thus, considering
patches of neighboring pixels not only increases the speed
of the proposed method, but also allows to encapsulate
local redundancy which could be used as feature statistics.
Nevertheless, these techniques have the drawback of aban-
doning pixel accuracy. For that reason, we have defined three
different grid topologies to study which is the one that leans
better to the final solution.

1) Non-overlapped regular grid: This grid is composed
of squared non-overlapped patches directly defined
over the image. The main advantage of this topology is
its simplicity. However, since each pixel of the image
belongs to only one patch, final pixel class assignment
will be only affected by its patch label. This means that
final pixel category assignation would strongly depend
on how patches fall into the image.

2) Overlapped regular grid: In order to avoid the
strong dependence on the grid location over the im-
age, we also define a squared patched grid, but with
overlapping. In this grid, each pixel is contained in
several patches according to the parameter φov , which
specifies, in pixels, the separation from one patch to
its neighbors. Therefore, final class assignment of a
pixel is weighted up between the class probabilities
of all its patches. This process is explained in section
II-E.

3) Deformable grid: With this topology we aim at
adapting the grid to center the cells on the objects. We
have defined a deformable squared patched grid which
follows the concept of deformable model presented
in [8]. By the time the regular grid is constructed,
for each of its cells, we move its center (within a
deformation area) to the point that maximizes the total
amount of intensity of pixels in the 9-neighboring
patches and the patch itself.

Once the grid is created, Principal Component Analysis
is calculated over the row-wise vectors of all the patches
generated by the grid, and for all learning images. Every
resulting descriptor maintains the 95% of the information
contained in the patch while reducing considerably their
dimensionality.

C. Vocabulary creation

Vocabulary creation is a very simple step. All the descrip-
tor vectors are clustered into codewords using the K-Means
algorithm proposed in [9]. Finally, from each center of the
clusters, its representative visual word is obtained.

D. Class probability assignment to visual words

Once the vocabulary is created, the probability that a
given word belongs to each of the classes has to be cal-
culated. To do so, each patch pt extracted from the training
images is assigned to the closest word of the dictionary
wj ∈W = {w1, ..., wj , ..., wN}. Moreover, according to the
ground-truth of the training images, each patch is assigned
to the class ci ∈ C = {c1, ..., ci, ..., cM , cBackground} it
belongs to. Notice that, those patches that do not fall into
any object according to the ground-truth would be assigned
to the extra category Background, which assures that all
patches are assigned at least to one class. Moreover, it is
worth to say that, since our ground-truth is labelled at pixel
level and patches do not preserve boundaries, a patch would
be assigned to an object category whether it contains a nP
minimum amount of pixels of a certain class. Finally, the
conditional probability of a class ci for a given codeword
wj , is calculated as follows:

p(ci|wj) =
#(ptwj , ci)

#ptwj

,∀i, j, (1)

where #(ptwj
, ci) is the number of patches assigned to the

codeword wj that have label ci, and #ptwj stands for the
number of patches assigned to this codeword. Of course,
the summation of the probabilities of a codeword for all the
classes is one:

M+1∑
i=1

p(ci|wj) = 1,∀j. (2)

E. Object Recognition

Finally, in the object recognition step, the grid creation
process is also done for every input image of the test-
set. Once all the patches have been generated, each patch
inherits the class probabilities of the closest codeword in
the Euclidean space by means of nearest neighbor (1-NN).
Therefore, each patch has a probability of belonging to
every class, which can be considered as the classification
confidence of assigning a patch into a class. Since a pixel-
level categorization is desired, the transition process from
patch to pixel classification would depend on the grid
topology chosen.
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Figure 1. Process pipeline

In the case of non-overlapped, pixels px take directly the
class probabilities of their patch pt. Their final classification
is that one that maximizes the conditional probability:

class(px) = argmax
i

(P (ci|pt)). (3)

On the other hand, in deformable and overlapped grids,
pixels are contained in several patches. Since every patch has
its own probability of belonging to every class, pixels would
acquire a definite number of classification probabilities per
object category. In other words, different classification re-
sults are obtained for a single pixel which leans us towards
a combination of classifiers problem. Therefore, adapting
the Mean Rule presented in the theoretical framework for
combining classifiers of Kittler et al. [10], the final pixel
classification is obtained as:

class(px) = argmax
i
mean(P (ci|pt)),∀pt | px ∈ pt. (4)

III. EXPERIMENTS

Even though our system is oriented to multi-class object
detection, we tested its suitability to discriminate walls over
background. Thus, our system evaluation is performed over
two classes: Wall, composed by both, inner and exterior
walls; and Background, which contains the rest of the
elements. In this section, we firstly introduce the document
dataset used in the experiments. Secondly, the evaluation
protocol chosen for measuring the correctness of our ap-
proach is explained. Finally, we present the quantitative
results obtained for different grid configurations.

A. Architectural Floorplan Dataset

In order to evaluate the performance of our system for
wall segmentation in floorplans, and due to the lack of any
public corpus regarding this topic, we have enlarged the
dataset used by Macé et al. in [11] for room detection, to
90 real architectural drawings. The pixel-level ground-truth
has been manually done and is composed of two classes:
Wall and Background. The complete dataset has been divided
into two subsets: validation-set and test-set. The former is
composed of 30 plans to perform the evaluation of different
parameters, e.g. patch-size or dictionary dimension, using
a 5-fold cross-validation strategy. On the other hand, the

evaluation of our system is performed using a 10-fold cross-
validation over the remaining 60 plans of the test-set. For
clarity, this set will be called as Dataset-1. A floorplan
drawing of this collection is shown in figure 2a

In addition to that, we also compiled a second corpus
of real floorplans composed of low-resolution documents
which contain a completely different notation for walls:
variable hatched lines for exterior walls, and dotted lines
not uniformly defined for interior ones. Our intention is to
confirm whether the system is capable to segment walls in
plans with a completely different graphical convention. Due
to the small amount of plans in this dataset – only 10 – all the
documents have been used for training and testing following
Leave-One Out strategy. This set is called Dataset-2 and a
floorplan example is shown in figure 2c.

B. Evaluation Protocol

In the majority part of floorplans – is the case of our two
datasets – all its elements, such as walls, doors, furniture, etc.
are modeled by black lines over a white background. Since
the goal of our approach is to segment walls, which can
be understood as a process to discriminate lines that model
walls from the rest ones, it make sense that only black pixels
in the original binary image would be taken into account in
the evaluation process of our method.

C. Results

Several experiments have been performed in order to show
the suitability of our method, using the three types of grid
topologies, for wall segmentation in both datasets presented.
Due to the lack of a specific quantitative evaluation for
floorplans wall segmentation in the state-of-the-art, we ex-
press our results using the Jaccard Index JI, also known as
VOC score [12], which has become an evaluation standard
in Computer Vision for segmentation tasks when a ground-
truth is available. This index takes values from 0 to 1 and
the higher it is, the better segmentation is performed. It is
computed as:

JI =
TruePos

(TruePos+ FalsePos+ FalseNeg)
. (5)
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Basically, our approach is affected by three global param-
eters: the size of the grid-patch (PS), the number of words
in the dictionary (DS), and the number of pixels needed
in a patch to consider it as a certain class in the learning
step (nP). In the case of nP, this parameter has fixed
experimentally to 0, which means that only one pixel in a
patch labeled as Wall in the ground-truth, is needed to label
the patch as this class in the learning step. Contrarily, PS
and DS are studied separately for each dataset.

• Dataset-1: The parameters have been tuned performing
different experiments using the validation-set created
over this dataset, which are summarized in table I.
The Best results for this collection are obtained with
a small grid size using the overlapping strategy. The
main reason of this is that walls are modeled with thick
stroked lines, and thus, become clearly highlighted over
the rest of the elements expressed with thiner ones.
The patch size is 8×8 pixels, that is able to capture
the information of thiner and thicker walls meanwhile
it discards most of the remainder lines corresponding
to symbols and other elements. In addition to that, as
there is not a huge intra-variability for this class, a large
vocabulary is not needed; only 100 words are enough
to discriminate walls escaping from over-fitting. Final
results for the test-set using the best configurations
regarding the grid and vocabulary size for the three
grid topologies are shown in table II.

• Dataset-2: Given the weak number of plans in this
dataset, the suitable parameters have been tuned using
the whole collection as explained in III-A. In this
dataset, wall segmentation is a great deal more chal-
lenging than in previous one. This is mainly because
this collection contains low-resolution documents, and
because there exists a great intra-class variability for
walls: there are different notations for exterior walls
and they are also completely differently modeled from
interior ones. Therefore, best performance for this set
is achieved using either an overlapping or a deformable
grid with bigger patches and a larger vocabulary. The
size of the patch that leans to the best solution is PS =
20×20, which is able to compile the texture information
of thicker and thiner walls. A vocabulary of 2000 words
is used to encapsulate the large class-variability. The
results for the best configurations using the three grids
topologies are also shown in table II.

D. Discussion of the results

Best results in both datasets are obtained with overlapped
and deformable grids. The main reason is that, unlike non-
overlapped grid, these topologies are able to incorporate in
the classification process contextual information contained in
neighbor patches. In the case of overlapping grid, each pixel
is influenced by several overlapped patches according to φov .

Table I
RESULTS IN THE VALIDATION-SET OF Dataset-1 FOR DIFFERENT

PARAMETERS AND GRID TOPOLOGIES. HERE WE EXPLORE THE IMPACT
OF PS AND DS COMBINED WITH PROPOSED GRID TOPOLOGIES. FOR

OVERLAPPING GRID, φov = 4 FOR PS = 8×8; φov = 5 FOR PS = 10×10;
AND φov = 5 FOR PS = 15×15. BEST CONFIGURATION RESULTS FOR

EVERY GRID TOPOLOGY ARE HIGHLIGHTED

Grid topology DS PS = 8×8 PS = 10×10 PS = 15×15

non-overlapped
100 0.9513 0.9516 0.9492
300 0.9509 0.9491 0.9502
500 0.9509 0.9501 0.9485

deformable
100 0.9545 0.9560 0.9525
300 0.9583 0.9566 0.9573
500 0.9582 0.9557 0.9561

overlapped
100 0.9648 0.9641 0.9630
300 0.9639 0.9620 0.9623
500 0.9633 0.9616 0.9618

Table II
BEST CONFIGURATION RESULTS FOR Dataset-1 AND Dataset-2 FOR

DIFFERENT GRID COMPOSITIONS.

grid topology Dataset PS DS φov JI score

non-overlapped Dataset-1 10×10 100 – 0.9543
Dataset-2 20×20 2000 – 0.7085

deformable Dataset-1 8×8 300 – 0.9615
Dataset-2 20×20 2000 – 0.8259

overlapped Dataset-1 8×8 100 4 0.9673
Dataset-2 20×20 2000 5 0.8241

Conversely, in deformable grid, patches are adapted to walls;
every patch center is moved regarding the pixel intensity
of its neighbors. This contextual information allows, for
instance, to increase the classification rate of pixels that are
located in the borders of the walls. A correct classification
of these pixels using a non-overlapped grid would depend
on how patches fall into the image.

Two qualitative examples of walls detected for the best
configuration using an overlapped grid in both datasets are
shown in figures 2b and 2d. We can observe that, for
Dataset-1, the segmentation is almost perfect. For Dataset-
2, we are able to recover most of the wall information but
including other extra elements that are not walls. These
extra elements could be removed with some post-process
that considers contextual information.

IV. CONCLUSIONS

We have presented a bag-of-patches method for wall
segmentation in floorplans. This approach, unlike traditional
segmentation methods based on vectorization, is able to deal
with the variability on the notation of floorplans. For a new
notation, only the parameters of the method need to be
retrained, without changing the method itself.

We have shown that our model achieves high segmenta-
tion rates at pixel level on two datasets with a completely
different notations and resolutions. These results encourage
us to improve the performance of our approach by extracting
more relevant features from patches. Moreover, we are
also studying to incorporate some spatial consistency post-
process, such as MRF, in order to refine our classification

1273



(a) (b)

(c) (d)

Figure 2. Qualitative result examples of Wall Segmentation for both datasets. (a) and (c) Plan examples of Dataset-1 and Dataset-2 respectively. (b) and
(d) Walls detected and segmented using the best overlapped grid configuration for each dataset.

results. At the moment, our approach is being improved
to move from the current pixel-level segmentation to Wall
recognition as entity. On top of that, our intention in a long-
term is to use an improvement of our method not only to
segment walls and other objects for many different notations,
but also to apply it to new frameworks as engineering
drawings.
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