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Abstract—We present a new method to train the members of
a committee of one-hidden-layer neural nets. Instead of training
various nets on subsets of the training data we preprocess
the training data for each individual model such that the
corresponding errors are decorrelated. On the MNIST digit
recognition benchmark set we obtain a recognition error rate
of 0.39%, using a committee of 25 one-hidden-layer neural
nets, which is on par with state-of-the-art recognition rates of
more complicated systems.
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I. INTRODUCTION

Whatever the approach for building a classifier to solve

visual pattern recognition tasks [1]–[7], at some stage in the

design process one has collected a set of possible classifiers.

In most studies the various classifiers are evaluated on a

benchmark data set and only the result of the best classifier

is reported. Obviously one of the classifiers yields the best

performance. Intriguingly, the sets of misclassified patterns

of the different classifiers do not necessarily overlap. This

suggests that different classifier designs offer complementary

information, which could be harnessed in a committee. An

overview of various fusion strategies can be found in [8]–

[14]. More recently [15] showed how a combination of

various classifiers can be trained faster than a single classifier

yielding the same error rate.

For a committee to work best, the aim is to produce a

group of classifiers such that their errors are not correlated.

This can be achieved using different classifiers and different

training sets. In this study we focus on the latter, training

identical classifiers on data that are preprocessed in different

ways. As long as the same output activation function is used

for all the classifiers, it is straightforward to combine them.

Currently, the best results on MNIST have been obtained

by deforming the training set [1], [3], [5], [7]. Deformations

are a simple way to avoid over-fitting through implicit

regularization and also to introduce the desired invariance

into the classifiers. In addition to deformations we focus on

preprocessing of the data prior to training.

II. BUILDING THE COMMITTEE

Consider a pattern recognition problem where pattern x
is assigned to one of k possible classes. Using a softmax

activation for the output layer of the neural nets and a 1-

of-k coding scheme for the target data, the outputs of the

trained nets approximate the posterior class probabilities

[16]. Having n trained networks we focus on three different

methods to build the corresponding committee of networks:

1) Majority voting Committee: choose the class with

most votes from the n classifiers for a given input x
(if two classes have the same number of votes, choose

the first);

2) Average Committee: average the class probabilities

from the n classifiers and choose the class with highest

average posterior class probability for a given input x;

3) Median Committee: take the median of the class

probabilities from the n classifiers and choose the class

with highest median posterior class probability for a

given input x.

The majority voting scheme also works if the outputs of

the various networks are normalized differently, but all infor-

mation about the confidence of each prediction is discarded.

The average and median committees on the other hand

require the outputs of the various networks to be normalized

in the same way, but also provide scores/confidence levels

for each class label.

Forming a committee can be formulated as a linear

combination of the individual experts [17]:

ycom(x) =

N∑

n=1

wnyn(x) (1)

where N is the number of individual experts and wn is the

combination weight for each expert.

A more flexible combination scheme is possible when

each weight also depends on class k [18]:

ykcom(x) =
N∑

n=1

wnkynk(x) (2)

resulting in k × N weights that have to be inferred from

additional data that for obvious reasons should be distinct
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from the data used to train the classifiers. In the experi-

mental section we list results of optimal committees whose

combination weights are obtained minimizing the MSE error

over the validation set. On the validation set the optimized

committees perform better (by construction) but do not

generalize well to the test set. Instead of minimizing the

MSE error [18] proposed to minimize the misclassification

error. However, we show that rather than optimizing the

combination of the various experts it is more important

to actually obtain experts whose predictions are as weakly

correlated as possible.

III. TRAINING THE NEURAL NETS

In all our experiments we train multilayer perceptrons

(MLPs) with one hidden layer of 800 units. We use the

standard softmax output non-linearity with cross-entropy

loss function and hyperbolic tangent hidden unit activation

function. The inputs are normalized (scaled to [0, 1]) and

the weights are initialized from a zero mean Gaussian with

standard deviation scaled by the fan-in to each unit [16]. All

MLPs are trained for 500 epochs with a stochastic conjugate

gradient algorithm (batches of 1000 images) that maintains

pairwise conjugation of gradients [19]. 10000 randomly

chosen digits of the MNIST [1] training set are used for

validation and the remaining 50000 digits for training. The

MLP with lowest error on the validation set is considered

trained and subsequently used as the classifier. If training

data are continuously deformed, elastic deformations [3],

scaling (horizontal and vertical) and rotation are used. We

combine affine (rotation, scaling, horizontal shearing) and

elastic deformations, characterized by the following real-

valued parameters:

• σ and α for elastic distortions emulating uncontrolled

oscillations of hand muscles (see [3] for details);

• β – a random angle from [−β,+β] describes either

rotation or horizontal shearing. In case of shearing,

tanβ defines the ratio between horizontal displacement

and image height;

• γx, γy for horizontal and vertical scaling, randomly

selected from [1− γ/100, 1 + γ/100].

Preprocessing of the original MNIST data is mainly moti-

vated by practical experience. MNIST digits are normalized

such that the width or height of the bounding box equals

20 pixels. The variation of the aspect ratio for various digits

is quite large, and we normalize the width of the bounding

box to range from 8 to 20 pixels with a step-size of 2 pixels

prior to training for all digits except ones. This results in 7

different training sets. Additionally, we generate a deslanted

training set horizontally shearing the digit with magnitude:

tan(α) ∗ d, where α is the angle of the first principle

component of pixel intensities with respect to the vertical

axis and d is the vertical distance from the image center

(Fig. 1).

Figure 1. (Left panel) x-, y- coordinates (circles) of the original image
together with the eigenvectors scaled by the corresponding eigenvalues.
(Right panel) x-, y-coordinates (circles) of the deslanted image after
horizontal shearing.

The experiments performed with these nine different

data sets will henceforth be referred to as the experiments

with preprocessed data. Figure 2 shows ten digits from

MNIST preprocessed as described above (left) and the same

digits with additional deformations (right). The first row

corresponds to original digits whereas from the second row

downwards increasing bounding box normalization from 8

to 20 pixels is applied, the last row corresponds to deslanted

digits.

Figure 2. (Left panel) Different preprocessing for ten digits from MNIST.
From top to bottom: original, 8, 10, 12, 14, 16, 18, 20, deslanted. (Right
panel) Similar but with deformations (see text for explanation).

IV. EXPERIMENTS

We perform six experiments to test the performance

increase associated with the use of a committee. Each

committee consists of nine randomly initialized one-hidden-

layer MLPs with 800 hidden units, trained with the same

algorithm on randomly selected batches. The five commit-

tees differ only in how the data are preprocessed (or not)

prior to training and on how the data are deformed during

training.

The first two experiments are performed on undeformed

original MNIST images. We train a committee of nine MLPs

on original MNIST and we also form a committee of MLPs

trained on preprocessed data (as described in section III). In

Table I the error rates are listed for each of the individual
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nets and the three committees. The improvement of the

committees with respect to the individual nets is marginal for

the first experiment. Through preprocessing the individual

experts and the corresponding committees achieve however

substantially better recognition rates.

Table I
Error rates of each individual net and three committees. For experiment 1
nine nets were trained on the original MNIST, whereas for experiment 2

nine nets were trained on preprocessed data: WN x - Width Normalization
of the bounding box to be x pixels wide; DESL - deslanted training set;

ORIG - original MNIST.

Error rate [%]
Exp. 1 Exp. 2

Net 1: init 1: 1.83 WN 8: 1.58
Net 2: init 2: 1.79 WN 10: 1.62
Net 3: init 3: 1.80 WN 12: 1.37
Net 4: init 4: 1.77 WN 14: 1.48
Net 5: init 5: 1.72 WN 16: 1.53
Net 6: init 6: 1.91 WN 18: 1.56
Net 7: init 7: 1.86 WN 20: 1.49
Net 8: init 8: 1.62 DESL: 1.80
Net 9: init 9: 1.75 ORIG: 1.79
Majority: 1.72 1.28
Average: 1.69 1.28
Median: 1.72 1.29

In order to see the combined effect of preprocessing and

deformation, we perform four additional experiments on

deformed MNIST (Tab. II). Unless stated otherwise, default

elastic deformation parameters σ = 6 and α = 36 are used.

All experiments with deformed images independent horizon-

tal and vertical scaling of maximum 12.5% and a maximum

rotation of ±12.5◦. Experiment 3 is similar to Experiment 1,

with the exception that the data are continuously deformed.

Error rates of the individual experts are much lower than

without deformation (Tab. I). More importantly, the error

rates of the committees (0.55%) are the best reported results

for such a simple architecture. In experiment 4 we randomly

reselect training and validation sets for each of the individual

experts, simulating in this way the bootstrap aggregation

technique [10]. The resulting committee does however not

perform better than that of experiment 3. In experiment 5 we

vary deformations for each individual network. Error rates of

some of the individual nets are bigger than in experiments 3

and 4, but the resulting committees have significantly lower

error rates. In the last experiment we train nine MLPs on

preprocessed images that are also continuously deformed.

The error rate of the average committee (0.40 %) equals

the best error rate obtained without pretraining but with

a dedicated architecture (i.e. a convolutional net [3]). We

also form a committee of all the 25 independent nets listed

in Table II. We exclude nets from experiment 4 because

they are trained using the same deformation as nets in

experiment 3. Net 5 from Experiment 5 and Net 9 from

experiment 6 are also excluded because these two nets are

taken from experiment 3. The error rate of the resulting

average committee (0.39 %) matches the current best result

[5], obtained with pretrained convolutional nets.

For all six experiments the average committee gives the

lowest error rates, the majority and median committees

perform nearly as well.

A. Optimized Committees

As discussed in Section II one can also optimize the

combination of experts over the validation set. In Table

III we list the recognition rates obtained by minimizing

the MSE error over the validation set for the two models

in eq. (1) and (2), referred to as optCom1 and optCom2.

Recognition rates are listed for the validation as well as for

the test set and for comparison the result of the average

committee is also listed. By construction, error rates on

the validation set are lower for the optimized committees

and the more flexible combination scheme (eq. 2) yields

the lowest error rates. As can be seen from the recognition

rates on the test set, the optimized committees do not always

generalize well to the test set. Interestingly, the error rates of

the optimized committees for the bootstrapped experiment

(Exp. 4) are extremely low for the validation set but do not

generalize well to the test set. We conclude that forming

an optimized linear combination over a validation set does

not generalize well to the unknown test set, and forming a

committee by simply averaging the outputs is sufficient.

Table III
Error rates of average and optimized committees on the validation as

well as on the test set for all six experiments.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6
validation:
average: 1.72% 1.22% 0.56% 0.26% 0.57% 0.50%
optCom1: 1.70% 1.16% 0.56% 0.19% 0.58% 0.46%
optCom2: 1.54% 1.12% 0.47% 0.06% 0.49% 0.38%

test:
average: 1.69% 1.28% 0.55% 0.54% 0.47% 0.40%
optCom1: 1.69% 1.25% 0.54% 0.54% 0.49% 0.41%
optCom2: 1.71% 1.23% 0.55% 0.60% 0.50% 0.44%

B. Summary of Experiments

The 39 misclassified digits of the best committee from

Table II are shown in Figure 3. Many of them are ambigu-

ous and/or uncharacteristic, with obviously missing parts

or strange strokes. Interestingly, the second guess of the

committee is correct for all but one digit for which the third

guess is the correct answer. For the third digit from Figure

3 for example it is even difficult for a human to tell the

digit from being a three or a five, and as a matter of fact

the committee is also undecided, assigning posterior class

probabilities of p(3|x) = 0.4661 and p(5|x) = 0.5339 to

the digit three and five respectively.

Why does this work so well? In order to optimally harness

the complementary information of each expert in the com-

mittee we aimed for experts whose errors are not correlated.
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Table II
Error rates of each individual net and three committees. In experiments 3 and 4 nine nets were trained on deformed (σ = 6, α = 36) MNIST, the

difference being that training and validation sets were reselected in experiment 4. In experiment 5, nine nets were trained on deformed (different σ, α)
MNIST, and in experiment 6 nine nets were trained on normalized, deformed (σ = 6, α = 36) MNIST. WN x - Width Normalization of the bounding box

to be x pixels wide; DESL - deslanted training set; ORIG - original MNIST.

Error rate [%]
Exp. 3 Exp. 4 Exp. 5 Exp. 6

Net 1: init 1: 0.68 0.72 σ = 4.5 α = 30: 0.75 WN 8: 1.05
Net 2: init 2: 0.72 0.68 σ = 4.5 α = 36: 0.69 WN 10: 0.64
Net 3: init 3: 0.71 0.82 σ = 4.5 α = 42: 0.94 WN 12: 0.78
Net 4: init 4: 0.72 0.73 σ = 6.0 α = 30: 0.55 WN 14: 0.70
Net 5: init 5: 0.71 0.69 σ = 6.0 α = 36: 0.72 WN 16: 0.60
Net 6: init 6: 0.62 0.71 σ = 6.0 α = 42: 0.60 WN 18: 0.59
Net 7: init 7: 0.65 0.70 σ = 7.5 α = 30: 0.86 WN 20: 0.70
Net 8: init 8: 0.80 0.66 σ = 7.5 α = 36: 0.79 DESL: 0.63
Net 9: init 9: 0.69 0.75 σ = 7.5 α = 42: 0.61 ORIG: 0.71
Majority: 0.55 0.54 0.49 0.43
Average: 0.55 0.54 0.47 0.40
Median: 0.55 0.54 0.49 0.42

All 25 independent nets from experiment 3,5 and 6
(see text for explanation)

Majority: 0.41
Average: 0.39
Median: 0.40

Figure 3. The 39 errors of the best committee from Table II, together with
the two most likely predictions (bottom, from left to right) and the correct
label (top, right).

And indeed, performance of the committees crucially de-

pends on the percentage of the total errors that are committed

by a single expert. For experiment 1 only 16.9% of the errors

are committed by a single expert. Applying normalization

prior to training, as in experiment 2, this percentage roughly

doubles to 32.9%. Interestingly, deformations applied in

experiment 3 (33.3%) have an effect similar to preprocess-

ing. In experiment 4 no improvement was observed through

random re-selection of training and validation set (33.7%).

Choosing different deformation parameters as in experiment

5, the percentage rises to 36.8%. Combining preprocessing

with deformations, as in experiment 6, resulted in 38.3%

and also produced the best committees.

In a companion paper [20] we successfully applied a com-

mittee of convolutional neural networks (CNN) to handwrit-

ten character recognition (including upper- and lowercase

letters). Furthermore a committee of an MLP trained on

features and a CNN trained on pixel intensities [21] won

the German Traffic Sign Recognition Benchmark [22]. This

demonstrates that simply averaging predictions of various

experts is an easy way to improve recognition performance

for different tasks.

V. CONCLUSIONS

For a committee to work best, the errors of the individual

experts should not be correlated. We showed how this

is achieved by simple preprocessing of the data prior to

training. The applied preprocessing is motivated by ob-

served variations in aspect ratio and slant of handwritten

digits. Using a committee of simple, one-hidden-layer MLPs

with 800 hidden units, we are able to achieve state-of-the-

art performance on the MNIST benchmark. The two big

advantages of the proposed method are: 1) forming the

committee does not require additional training data, and 2)

through different preprocessing the individual predictors are

not strongly correlated.
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