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Abstract—Extracting specific content from certain types of
documents can be a very challenging task, especially when
developing a not so tailored solution and refraining from using
explicit contextual information. In this paper, we address the
problem of automatically extracting data from semi-structured
documents through an unsupervised process based on an
analysis of the document’s own morphological composition.
We also discuss how this approach can be applied to different
types of documents, with special attention being paid to
college transcripts. The success of our method is supported
by extensive tests, from which we have drawn some authentic
examples.
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I. INTRODUCTION

Over the course of the last two decades, the world saw
great progress in technologies pertaining to the automation
of tasks related to document image processing. Usually
guided by the problems caused by massive volumes of
documents, applied science seems to have contemplated
some areas more than others. For instance, postal automation
[2], bank checks processing [5], and digital libraries [1]
are a few well-founded examples among many others that
saw a great deal of improvement in the automation of their
processes.

In the field of Document Image Analysis, we can see
that much has been done with page decomposition and
particularly with separating text from non-text elements,
either for documents or for video- and camera-based images.
However, for semi-structured documents, where the structure
is the same across different samples but the diversity of
their content dictates their appearance, we are faced with
an intriguing case of data capture. Despite its apparent uni-
formity, its segmentation imposes some unique demands due
to the inconsistency and disposition of its content. Typical
examples are line-item extraction from invoices or purchase
orders, tax forms processing, as well as transfer credits and
equivalencies processing from college transcripts. Needless
to say that for each one of these data-intensive tasks, manual
data entry is a time-consuming and error-prone activity that
organizations should avoid for the sake of accuracy and
productivity.

We often see systems performing data capture on semi-
structured documents making use of contextual informa-

tion. It is not uncommon to use templates to identify the
document’s structure, or OCR-based engines that search
for key terms to locate specific content. And sometimes
a combination of both approaches is used. However it is
important to always consider the viability and the perfor-
mance aspects of these solutions. The practical drawback
of using templates arises from the variability of these doc-
uments since a new template must be generated for each
new form. While this might be the case for most of the
template based solutions, Medvet [10] shows a method to
automatically update templates on an invoice processing
system. The performance-related pitfall of using OCR-based
engines comes from the dependency on quality images,
which may not be the rule in a real-world environment
dealing with a large-scale volume of documents. OCR-based
solutions can also have a limited relevancy since they are
language specific and dependent on the OCR’s accuracy. In
[8], Wnek uses a combination of template matching and
OCR to extract data from documents such as insurance
forms and invoices. The method learns the position and other
geometric features from the data to be extracted throughout
an inductive process that also involves the form’s template.
Takebe [9] presents a method to extract data from invoices
and tax forms without analyzing the document’s layout. The
accuracy of their method varies depending on the task being
performed: general data extraction or header only extraction.

The alternative we propose in this paper is a structural
analysis that can accurately identify specific content from
semi-structured documents by analyzing only its own com-
position. As we can see in the following sections, one of
the challeges faced here is the fact that the main content
on the document is usually blended with other non-relevant
text lines and not isolated in individual blocks. Since the
process is based on individual text lines and not blocks or
groups of lines, isolating line items on invoices becomes a
straightforward task. Although our method can be applied
to different types of forms, we made our case using college
transcripts, EOBs1 and invoices. This is an unsupervised
process whose main contributions are: 1) the complete
absence of templates or models, 2) there is no need for a
training phase, and 3) the capability of processing a broad

1Explanation Of Benefits: The document sent by the health insurance
plan briefly detailing health services obtained and their reimbursements.
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range of documents.
Although invoices processing became a well-linked sub-

ject in the past years, very little can be found on college
transcripts processing other than some commercial appli-
cations. However, the method we offer here comprises an
original strategy with unparalleled matches on the literature.
This method reaches a success rate of more than 95% on
a database of 447 images of transcripts for the geometric
layout analysis.

This paper presents the details of our work in the follow-
ing manner: Section II defines the basics of data capture
for college transcripts; Section III provides a description
of how the document’s structure can be used to identify
specific content, along with substantial tests and examples;
Sections IV and V conclude with discussion and identify
some directions for future work.

II. COLLEGE TRANSCRIPTS PROCESSING

Today in the United States there are approximately 4352
higher education institutions (colleges, universities and ju-
nior colleges), with only 70% of them having more than 500
students. Transfering credits from a previous university is
the most common situation, leading to data extraction from
academic transcripts. Although electronic college transcripts
are available at some higher education institutions, regular
paper transcripts still account for the vast majority of the
transcripts processed every year by American universities.
Althought there is no accurate information about the precise
number of transcripts processed annually, it is known that
only the states of California and Texas process together
about one million transcripts annually. Thus, some insti-
tutions started experiencing bottlenecks in their admissions
offices due to the high volume of transcripts, which in turn
created a higher demand for efficiency, reduction of manual
data entry, and easier record access.

A. Transcripts Processing Goal

Like most semi-structured documents, college transcripts
are different from school to school. Even though the essential
information is present in all transcripts, they vary in the
amount of detail provided. From the approximately 250
different fields a transcript can accommodate, a much more
restricted number is generally used for most colleges and
universities. Commonly used transcript fields include the
following data:

• personal data: name, date of birth, age, genre, address,
student ID number or Social Security Number, etc.

• previous degrees: (when existent) school name, year,
major, etc.

• course data: term, course codes, course descriptions,
hours attempted, hours earned, possible points, points
earned, grade, summary/totals, GPA, accumulated GPA,
etc.

From the items above, course data represents the core
information contained in a transcript and is the main target
of data capture systems for transcripts.

B. Some Common Challenges

Automatically processing these type of documents can
be a difficult task, especially for systems based on OCR
and rules where the maxim garbage in, garbage out holds
true. Template-based systems may undergo some difficulties
covering the wide spectrum of possible layouts. Regardless
of what the strategy, the differences in document layout and
the disposition of data are two common problems in this
domain. The orientation, number of document columns, con-
tent variation and background extraction are some expected
difficulties.

III. METHOD DESCRIPTION

For the geometrical layout analysis process, we are in-
terested to identify and correctly group similar text rows
into meaningful arrangements so that these groups can
posteriorly go through a logical classification. For college
transcripts, the goal is to extract the course information from
each semester block so that the school can gather all of the
data about the courses a student attended, when the student
atended the courses, and details related to the studend’s
grades, points, and hours. We look at each one of the
semester blocks as an individual table or tabular array where
the structural composition of each row is different. However,
this difference is smaller among individual groups of rows.
When we look at tables, we see how they communicate
a document’s content through the relationship of its rows
and columns. And this mutual dependency is what better
represents the concept we want to explore.

A. Structural Clustering

To get started, we pre-process the image by applying de-
noise, de-skew, and de-speckle processes. We also clean up
the lines and borders, since the borders in some transcripts
contain text that may interfere with the segmentation pro-
cess. Once pre-processing is done, the image is analyzed so
that its columns can be identified. Figure 1 shows a portion
of a transcript and each one of the left-hand columns it
contains. Because we do not need to read its content at
this point, each word here is represented by a colored box
where each color represents a different column. One can see,
for example, that column 1 is present on rows {a, b, c, i, s}.
Column 1 is therefore the catalyst element, bonding together
all of these rows in a specific combination that can only be
reproduced if all of these rows contain more than one column
in common.

So, let X(I) = {xi|i = 1 . . . n} be the set of all columns
xi on image I and let Ω be the sample space of all possible
row combinations according to the existing columns on each
of these rows. Hence ω1 is a sub-set of Ω containing rows
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Figure 1. Each one of the left-aligned columns on a transcripts extract

{a, b, c, i, s}, the only rows with a block in column 1. In
each ωi only a smaller group of columns is responsible for
representing the most cohesive group of rows according to
their structural composition. However, in order to find these
groups of very similar rows, we can clearly see that only
parts of all columns efficiently help to identify them (figure
2). The excessive number of columns should be reduced
to only the most representative columns in each group so
that we can better address this classification problem. To
identify these columns, we can analyze the relationship of
all the columns in ωi and look for an optimum set of columns
according to the following rule:

g = {y ∈ Y xi | p(y|ωi) > τ} (1)

where Y xi represents the columns in ωi and g represents
a sub-set of columns whose probability, given the sub-set
to which they pertain, ωi, is above a suitable threshold
dynamically calculated over ωi. From figure 2 we see that
for ω28 columns {24, 26, 27, 28} are the most representative
ones. Analyzing each column individually we try to build
groups of rows that are structurally correlated. Each row
might belong to different groups according to the columns
belonging to it. These groups are defined based on the best,
or more characteristic, set of columns they hold. That is
to say, a synthetic binary row ρ is generated based on the
columns from Y xi where each element from g is represented
by 1 or 0 otherwise. A binary abstraction is produced for
each row on ωi and the dissimilarity between each of these
binary rows and ρ is calculated. The final sub-group ω′

i will
then include only the rows that are closer to ρ.

Figure 2. Three of the sub-spaces from Ω: ω28, ω31 and ω35

It is also important to say that even though figures 1
and 2 were generated based on left alignment only (for
visual clarity), the core process may actually make use
of both left and right alignments. For college transcripts,
center alignment is not really useful, but right alignment is
a common choice for numeric fields like hours attempted,
hours earned, or points.

Once the first part of the process is complete, we are
faced with a decision step. After defining more cohesive
sub-groups of rows for each ωi and considering the number
of columns is usually larger than the number of rows, it is
not unusual to see one row being part of more than one final
sub-group ω′

i. For instance, if we look at row e we notice
that it can be part of at least two distinct final sub-groups: ω′

2

and ω′
14. That means row e could be part of an arrangement

with rows {d, e, j, k, l,m, t, u, v} or within a smaller group
with rows {d, e, k, t, u}. Having larger groups can help to
speed up the logical classification of these groups, but we
need to keep in mind that the compactness or homogeneity
of each ω′

i is equally or more important than the final number
of sub-groups. In order to decide the final group to which
each row should belong, we could use a criterion based on
the relative frequency of each class or even apply a cluster
validity index [4] that can check for the compactness of each
final sub-group along with the distances between them.

B. Matching Similar Patterns

As one might notice, the structural clustering process can
be very specific, since the existence of an extra column can
cause the process to classify similar rows into separated
groups. At this point, we can look at these rows from a
more distant perspective and use different criteria to see
which rows can actually be re-assigned to one conjoint
group. In doing so, we are trying to (a) speed-up the logical
classification process by having the smallest possible number
of classes and (b) lower the risk of having inconsistencies
among groups that should receive the same logical classifi-
cation.

Since structural clustering tries to group individual rows
together, this part of the process goes a little further by
analyzing the groups generated by structural clustering in
an attempt to put some of them together. Two very simple
ways of doing so run through the centroid of each ω′

i. We
could either determine the correlation between two candidate
centroids or calculate the distance between them. In this
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case, two sub-groups ω′
p and ω′

q are re-grouped if the
distance between their centroids are smaller than a specific
value calculated over their own length.

It is important to emphasize that this second grouping is
not as important as the “purity” of each individual group.
Because the process is not intended to split groups of
rows once they are formed, the quality and homogeneity of
these groups is crucial in order to have a successful logical
classification.

IV. EXPERIMENTS AND RESULTS

The process was tested on different types of documents
such as EOBs and invoices, but especially on college
transcripts. For our database the most common layout for
college transcripts is a two-column layout (65% of the total)
with a white-space separator (64% against 36% with line
separators). Transcripts with only one column follow right
behind (34%), and documents with three or four columns
are the most rare, representing less than 1% of the total.
For our tests, a set of 447 images from 327 institutions was
randomly picked from a larger collection of transcripts.

Because the layout of these documents can be so different
for each school, it ends up playing an important role in the
segmentation process. In our case, we first tried to detect the
main area of the document, ignoring the top and bottom parts
and breaking down each document column to be individually
analyzed. The potential problem with this approach stems
from documents with more than one document column
where there is a small amount of data in the second or third
columns. A low number of text rows means that there will
be a low frequency of similar rows, which in turn tends to
increase the number of groups due to the variability among
those rows. This shows the importance of looking to each
document column according to the document flow and not as
separated entities [6]. This approach simplifies the structural
clustering process in two ways: 1) it allows the data columns
to be more populated, and 2) the discrimination between
text row classes is more effective due to an increase in the
frequency of the class, which also results in an increase in
the inter-classes distance.

Table I summarizes the errors found during geometric
layout analysis (structural clustering + matching similar
patterns). Although we would like to have as few groups
from the same class as possible, having multiple groups
of rows for the same class (course rows, summary rows or
term rows) is not necessarily a problem. However, we are
concerned with the misclassification of text rows, which can
essentially happen in three different ways. Let’s call a cloud
row any text row that is not a term row, a course row or a
summary row. Therefore:

• Type I errors occur when a cloud row is misclassified
as one of the main text rows.

• Type II errors occur when a main text row is classified
as a cloud row.

Table I
TYPES OF TEXT ROWS ON TRANSCRIPTS AND THE PERCENTAGE OF

ERROR FOR EACH ONE OF THEM

Summary Course Term

Occurrences 6 9 83
Type I 16.7% – 93.97%
Type II 33.3% 11.1% 3.6%
Type III 50% 88.9% 2.4%

Relevant occurrences 6 9 5
Total errors 1.34% 2.01% 1.12%

• Type III errors occur when a main text row is classi-
fied as a different text row (such as a course row being
classified as a summary row).

As we can see, the problems with term rows are the most
common among all the possible errors. This is due to the fact
that these rows are usually very short, and consequently their
structure can be easily mistaken for a different type of text
row (usually some other short cloud row). However, almost
94% of the errors found with term rows are Type I errors.
This means that typically these rows cannot cause major
damage during logical classification, because they do not
have a supporting structure of main text rows around them
to build a semester block. Therefore, they are not relevant
for this case. Consequently, the accuracy measured over our
data set rises to 95.53%.

The tests performed over EOBs and invoices were dif-
ferent from the tests performed over transcripts, especially
because of the smaller number of invoices and EOBs
available. Nevertheless, the method responded well for both
invoices and EOBs. Some modifications were made to the
layout analysis due to there being less structural variation.
Moreover, both types of documents can have one line item
ending over the next line, which is an unusual scenario for
transcripts.

In figure 3, we present a transcript image with the final
grouping results. Not only were the main text rows correctly
grouped, but all of the remaining cloud rows were disposed
of in a coherent way. Although some sensitive data is masked
for privacy reasons, the image clearly shows all of the
important content and its final classification. We can see
that all the course rows (purple) were successfully assigned
to one single class, the same happening for summary rows
(pink) and their headers (beige). Term rows were separated
in three groups (red, blue and light blue) with no negative
implications since they are not mixed with any other type
of text row.

For invoices, we used a small group of 30 images for test-
ing. Unlike college transcripts, invoices include much less
variation in their layout because they have predominantly
one document column. The orientation and the separation of
each invoice column (solid lines or white space), however,
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Figure 3. A real college transcript and the final result of our geometrical
classification process

can still fluctuate. This is a real world set of images that
include handwritten notes, stamps and bar codes. The set
of images is also composed of invoices from different
countries in different languages. Although invoice number
and date are two commonly reviewed pieces of information,
we focus on extracting line items and totals. This allows
for a deeper analysis of each document and, consequently,
a better financial control.

We verified only 2 mistakes among the 196 line items
present in our database, which represents an accuracy of
98.97%. As for the totals, because these rows usually come
with other information on the same text line (usually on
their left side), they demand a closer analysis; the layout
on the bottom portion of these documents can be more
complicated than the rest of the page due to the presence of
text lines of different heights, credit card logos, fine print
return information, etc. For these reasons, the accuracy on
totals reached only about 70%.

V. CONCLUSION

We have presented a method for extracting relevant con-
tent from semi-structured documents. In contrast to other
methods that rely on templates, rules, or OCR-based en-
gines, our method relies on documents having their content
captured by an accurate analysis of their own morphological
composition and the structural relationship between columns

and text rows. Breaking it down into a two-step procedure,
we first execute what we call a structural clustering, which
is a comprehensive analysis of the document’s columns,
grouping similar text rows according to their homogeneity.
Following that is a process that fine-tunes the results and
merges together–not individual text rows–but groups of text
rows. As a typical bottom-up procedure, we do not allow
groups to be split, and so extra caution is taken when
associating these text rows.

We tested the process over a broad set of different
types of documents, and it shows very promising results
at 95.53% accuracy for the used data set. Our next step is
to feed a logical layout analysis with the results obtained
by the geometric layout analysis in order to assign a logical
meaning to each one of the classes found during geometrical
analysis.
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