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Instituto Tecnológico de Informática
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Valencia, Spain
{falvaro,jandreu,jbenedi}@dsic.upv.es

Abstract—In this work, a system for recognition of printed
mathematical expressions has been developed. Hence, a statis-
tical framework based on two-dimensional stochastic context-
free grammars has been defined. This formal framework allows
to jointly tackle the segmentation, symbol recognition and
structural analysis of a mathematical expression by computing
its most probable parsing. In order to test this approach a
reproducible and comparable experiment has been carried
out over a large publicly available (InftyCDB-1) database.
Results are reported using a well-defined global dissimilitude
measure. Experimental results show that this technique is able
to properly recognize mathematical expressions, and that the
structural information improves the symbol recognition step.

Keywords-mathematical expression recognition; symbol
recognition; structural analysis; context-free grammars;
stochastic parsing;

I. INTRODUCTION

Mathematical Expression (ME) recognition has been an
active research field in the last years, due to the rapid growth
of human interface devices and the great interest in transcrib-
ing scientific papers into electronic documents [1]. Most of
the works that have studied the handwritten ME recognition
problem have focused in the on-line approach [2], [3], [4]
which uses temporal information about the stroke input. Off-
line recognition deals with the image representation of ME,
which can be printed or handwritten [5].

Printed ME recognition is an important problem for
scientific document image analysis [1]. It has multiple ap-
plications like scientific document digitization, information
retrieval or accessibility for blind people. Off-line recogni-
tion of printed ME can be divided into two major steps [1]:
symbol recognition and structural analysis. Symbol recog-
nition is responsible for image segmentation and properly
detection of mathematical characters. Structural analysis
aims to determine the relations among mathematical symbols
in order to build a complete ME. Both problems are closely
related and misrecognitions in the symbol recognition step
usually cause errors in the analysis phase. Also, structural
information can help to solve the symbol recognition step.

Several approaches have been studied to solve the ME
recognition problem. Research of ME recognition based on
trees [6] or graphs [7], [8] uses algorithms for these data

structures. Otherwise, grammar-based approaches [9], [5]
employ formal grammars and their corresponding parsing
algorithms. Stochastic Context-Free Grammars (SCFG) are
a powerful formalism that can tackle both problems in a
natural way. SCFG for ME recognition has been studied in
previous works [9], [5] but some issues are not sufficiently
described. In this work we will focus on the off-line recog-
nition of printed ME using SCFG.

Most of previous works on ME recognition are not easily
comparable between them. There is a shortage of large, rep-
resentative, publicly available, groundtruthed data sets [10].
Nowadays, the UW-III database [11] that is a small database
with degraded images, and the InftyCDB-1 database [8]
that is a large database with good-quality images, are good
resources for printed ME recognition.

Automatic performance evaluation of ME recognition
systems is an issue still in development [10]. Published
works have reported several partial error metrics like symbol
error rate or operator recognition rate [4]. Some global error
measures were presented in [10], [12].

Our first contribution in this work is to provide a detailed
description of an off-line printed ME recognition system
based on SCFG. The second contribution of this work is to
describe an experimentation on a publicly available dataset
that makes easier the comparison with other systems.

The remainder of the paper is organized as follows. First,
a background of the problem is given in Section II. Then,
the formal statistical framework based on a two-dimensional
extension of SCFG is explained in Section III. Section IV
describes the ME recognition system developed in this work,
and Section V presents the experiments performed using
a publicly available database and a well-defined global
performance evaluation metric.

II. BACKGROUND

Off-line recognition of printed ME has been tackled using
different techniques for each recognition step.

ME image segmentation is often performed by computing
the connected components [5] or applying the projection-
profile cutting method [13]. Segmentation problem is not
an easy task, given that some mathematical symbols are
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composed of multiple components (i, j,=, : ). In addition,
image degradation causes regular symbols to be split into
several components. Image degradation also adds noise and
causes the appearance of touching characters which is a hard
problem.

Recognition of mathematical symbols is carried out using
pattern recognition techniques. Several classifiers has been
used to deal with this task, and a comparison can be found
in [14].

Structural analysis is usually the most different part of
ME recognition systems. Two main approaches to solve
this problem can be distinguished. First, several works have
used trees or graphs in combination with heuristic functions.
Zanibbi et al. [6] presented a system that built a baseline
structure tree which was transformed through lexical and
syntactical steps. Eto and Suzuki [7] defined a method that
computed the minimum spanning tree over the network that
linked the symbols of the ME.

Second, there are some papers that tackle the structural
analysis using formal grammars. Grammar-based ME recog-
nition started with the early work of Chou [9] that proposed
to use SCFG in order to solve this task. Other proposals have
been presented using definite clause grammars [4] or graph
grammars [15]. Yamamoto et al. [2] presented a statistical
formulation for on-line parsing of handwritten ME. They
defined a two-dimensional extension of SCFG and how to
compute spatial relations probabilities by using probability
functions and the Cocke-Younger-Kasami (CYK) algorithm.
Another interesting work was proposed by Průša and Hlaváč
in [5]. It was penalty based and it used SCFG for off-line
recognition solving the segmentation and symbol recognition
jointly with the structural analysis phase.

In the present work, we adapted the statistical framework
presented in [2] for on-line ME recognition, to the off-line
printed ME recognition problem. Thereby, we developed
an approach similar to [5] but defining a probability based
framework that provides a proper scenario to develop a
system where all the steps involved in ME recognition can be
automatically learnt. The segmentation, symbol recognition
and structural analysis can be tackled altogether. This frame-
work allowed us to directly integrate statistical distributions
into the model. Although the system is not fully developed,
it has incorporated the main parts.

III. TWO-DIMENSIONAL CONTEXT-FREE PARSING

SCFG are a powerful formalism of syntactic pattern
recognition that has been extensively used for string patterns.
However, it is possible to slightly modify this formalism
in order to model two-dimensional problems. In this work,
we are interested in modeling ME using SCFG. Hence, a
2D extension of SCFG and its corresponding version of the
CYK parsing algorithm are defined bellow based on [2], [5].

A. 2D SCFG

A SCFG can be defined as a tuple G = (N,T, P, S,Pr)
where N is the set of nonterminal symbols, T is the set of
terminal symbols, P is the set of derivation rules A→ α and
S is the starting symbol of the grammar. Each production
rule has attached a probability Pr(A→ α) ∈ ]0, 1], and∑
∀α Pr(A → α) = 1. This model can be represented in

Chomsky Normal Form (CNF) and it results in two type of
rules: terminal rules (A→ t) and binary rules (A→ BC).

The 2D extension of SCFG introduces mainly two dif-
ferences. First, in the 2D case, terminal and nonterminal
symbols describe two-dimensional regions. This means that
terminal and nonterminal symbols of the grammar contain
some features like 2D coordinates. Second, the production
rules have an additional parameter that describes the spatial
relation among regions. This relation is defined as A

spr−−→ α,
where spr denotes the spatial relation that models the rule.
Common spatial relations for ME recognition are: horizon-
tal, vertical (above or below relations), inside, subscript and
superscript. Terminal productions do not contain the spatial
relation because there is no relation with only one symbol.

B. CYK parsing for 2D SCFG

Once 2D SCFG are defined, we are able to model the
ME structure and to parse an input sample to obtain the
most probable derivation. We perform this task by using the
CYK algorithm, but it must be slightly modified to work
with 2D SCFG.

First, we define the way to compute the probabilities of
the derivations in a similar way as in [2]. In this paper
we suppose equal the prior probability of all expression
hypotheses. The probability of a terminal rule Pr(A→ t) is
obtained from a mathematical symbol classifier as the prob-
ability that region t belongs to class c such that (A → c).
The probability of a binary rule Pr(A

spr−−→ BC) models
the spatial relation spr between B and C regions. For
that reason, it must be defined a function or distribution
that represents the probability that regions B and C were
arranged according to spr.

Figure 1 shows the CYK parsing algorithm for 2D SCFG.
Given a 2D SCFG and a sample input x composed of n
symbols, the most probable derivation is computed. The ⊕
operator computes the smallest rectangle containing both
regions. The ] operator adds an element to the set if it
doesn’t appear in the set or if the element is already present,
the probability is maximized.

Looking at the 2D CYK algorithm, a remarkable dif-
ference is that the parsing table is indexed by only one
value. On the standard CYK parsing two indexes explain the
positions that define some substring. In the 2D case, there
is a table level for each subproblem size, and these levels
store a set of elements which contain their two-dimensional
space information. For that reason, at the initialization
loop the built subproblems are added at t[1] level, that is
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Input: 2D SCFG Gs = (N,T, P, S,Pr, spr) in CNF
and x = {x1, x2, . . . , xn} ∈ T ∗

Output: P̂rGs
(x): probability of most probable derivation

for all i = 1 . . . n do
for all (A→ xi) ∈ P do

if Pr(A→ xi) > 0.0 then
t[1] := t[1] ∪ (A, xi,Pr(A→ xi))

for all j = 2 . . . n do
for all a = 1 . . . j − 1 do

for all c1 = (B, r1, pB) ∈ t[a] do
for all c2 = (C, r2, pC) ∈ t[j − a] do

for all (A
spr−−→ BC) ∈ P do

prob := pB · pC · Pr(A
spr−−→ BC)

if prob > 0.0 then
t[j] := t[j] ] (A, r1 ⊕ r2, prob)

return (S, x, p) ∈ t[n]

Figure 1. CYK parsing algorithm for 2D SCFG. (A, r, p) represents that
nonterminal symbol A accounts for region r with probability p.

to say that they cover one input symbol. After that, the
parsing process continues by building new subproblems of
increasing size, where the spatial relation model contributes
to the probability of each possibility.

Finally, the time complexity of the algorithm is O(n4|P |)
whereas the time complexity of the classical CYK is
O(n3|P |). However, in the following section this complexity
will be discussed and reduced.

IV. MATHEMATICAL EXPRESSION RECOGNITION

We have developed a system based on 2D SCFG for
recognition of printed ME1. In this work, we manually
defined the grammar in order to account for all ME that ap-
peared in the InftyCDB-1 database. As a result, a wide range
of expressions were modeled, except left subscripts and
superscripts (21a) or matrices. After parsing an expression,
the system output the LATEX representation of the recognized
ME. In the following, the steps involved in a ME recognition
system are detailed.

A. Symbol Recognition

Given an image of a ME, the first step is to segment this
image into symbols. In this work, the method chosen to solve
the segmentation problem was to compute the connected
components of the input image. For all of these regions,
a mathematical symbol classifier was used to determine
the class of each one. In our case, the Nearest Neighbor

1The software is available at http://users.dsic.upv.es/∼falvaro

(NN) classifier was chosen with the Euclidean distance and
each bounding box was normalized to a fixed size [14]. A
mathematical symbol can belong to multiple classes due to
misclassification or different interpretations. For that reason,
the symbol recognition process classified each terminal in
several nonterminals that represented its possible interpreta-
tions. Finally, the parsing process decided the most probable
interpretation taking into account the ME structure.

The NN classifier computed the Euclidean distance be-
tween vectors, but in the CYK algorithm probabilities were
needed. Formally, given an image x, let p̂c be the nearest
prototype of class c from a labeled set, and let d(x, p̂c) be
the distance between them. The probability of x to belong
to the class c was obtained as

p(x | c) ∝ e−d
2(x,p̂c)

The CYK table was initialized with the classification results
obtained for each symbol. There are two main segmentation
problems. First, the system currently is not able to deal with
touching characters. Second, an important problem was the
multiple connected components symbol detection. In this
work, we merged close components and then the mathemat-
ical symbol classifier was used to obtain the probability of
being a certain symbol. These hypotheses were also added
to the CYK parsing table, and the structural analysis decided
the most probable derivation.

B. Structural analysis

We implemented the algorithm of Figure 1 to perform
the ME recognition, but some details of the system need
additional comments. The input of the developed system
was an image of a ME of n connected components, as
a result of the segmentation step. Thus, segmentation and
symbol recognition hypotheses were used to initialize the
CYK parsing table.

Once the CYK parsing table was initialized, the algo-
rithm went on building new hypotheses of increasing size.
The probability of a new problem derived from other two
subproblems c1, c2 of minor size was computed as

pB · pC · Pr(A
spr−−→ BC)

where pB and pC probabilities were obtained from the CYK
table, but the spatial relation probability Pr(A

spr−−→ BC)
had to be defined. In this work we manually defined proba-
bility functions for each type of spatial relation based on
geometric features [2]. Thus, the function ideally would
provide a high probability value given two regions and
a certain spatial relation, if they were arranged according
to that relation. Likewise, a lower probability value was
expected for unlikely regions relative positions. Examples
of regions features are the vertical centroid, point scale, or
the horizontal center.

There was a scaling issue with the probabilities of math-
ematical symbols of multiple connected components given

1227



that the basic unit of the CYK was a connected component,
not a symbol. Classifier probability of single component
symbol were inserted into the t[1] level of the CYK table.
However, symbols composed of two connected components
had to be inserted into the t[2] level, which probability
should be the product of three different values. Therefore,
these probabilities were scaled when they were added to
higher levels of the CYK table, in order to not favor
these type of constructions. We also limited the number of
multiple connected components detection to 2, so currently
the system could not detect properly symbols split in more
than two components.

The CYK algorithm presented in Section III had time
complexity O(n4|P |), but it was reduced as follows. It
should be noted that each region at a certain level of the
CYK table is checked to be merged with all the hypotheses
of another level. However, given the nature of ME, we know
which regions of the space contained likely elements. Hence,
we limited the hypotheses search space in a similar way
as in [5]. After completing one level of the CYK table,
the hypotheses were sorted according to their horizontal
coordinate, given that the ME grew in that direction. Then,
when elements contained in a specific region R of the space
were required, they could be easily obtained in O(log n)
over the sorted set. Consequently, the loop c2 ∈ t[j − a]
was changed to c2 ∈ R. Performing the partial sort using
a O(n log n) algorithm, the improved time complexity was
O(|P |n3 log n).

Finally, when the parsing process finished, the most
probable hypothesis of size n covered by the initial symbol
of the grammar was retrieved from t[n]. If the expression
was not fully recognized, the system looks for the most
probable hypothesis of minor size (t[n − 1], t[n − 2], . . .)
until it finds a valid ME.

V. EXPERIMENTS

We developed a ME recognition system based on 2D
SCFG, and we carried out some experiments to validate this
approach. The publicly available InftyCDB-1 database [8]
was used to perform the experiments. It has 21K ME, which
in turn contain 157K mathematical symbols belonging to
212 classes, and each symbol and expression is annotated
with many useful information. We discarded those ME that
only contained one symbol because they didn’t have any
structural information (25% of 21K ME). From the remain-
ing ME, we discarded those ME that contained touching
characters, or symbols composed by more than 2 connected
components (≡,5) because they were not modeled by the
defined SCFG (10.73% of 21K ME).

Finally, 13K ME were left for experiments, which rep-
resented around 85% of the expressions with more than
one symbol. From this data, 3K expressions were selected
as a test set, and the train set was composed by the 10K
remaining expressions. This partition was done randomly.

Table I
EXPERIMENT RESULTS FOR THE INFTYCDB-1 DATABASE.

#Symbols 2− 7 8− 14 15− 21 ≥ 22 Total
% 60.19 21.37 7.6 10.84 100
EMERS 0.8±1.5 2.6±3.1 4.1±4.2 8.4±9.3 2.25±3.8
SER(NN) 5.5 5.7 5.6 7.7 5.76
SER(ME) 4.5 4.9 4.2 5.6 4.68

The total number of mathematical symbol classes for the
experiment was 183.

Before recognizing the ME, the samples were prepro-
cessed using image filters in order to remove noise. As ex-
plained in Section IV, the NN classifier was used to perform
the symbol recognition. For that reason, we extracted and
normalized to a fixed size the mathematical symbols of each
ME from the training set, and these were used as prototypes
of the NN classifier [14].

Automatic ME performance evaluation is not an easy
task due to representation ambiguity of the groundtruthed
data [10] (usually as LATEX or MathML). In this work we
used EMERS [12] as a global performance metric. MathML
format directly represents a ME including its tree structure,
thus, this measure computes the edit distance between trees
of the recognized expression and the groundtruth data.
It should be noted that this measure doesn’t provide an
error value, but a comparable dissimilitude value instead,
so a zero-distance result means that the ME is perfectly
recognized.

The test set results were divided into several intervals
according to the ME number of symbols. Experiment results
are shown in Table I. First row specifies the number of
symbols of the ME samples whose results are reported in
each column. Second row (%) shows the percentage of
samples that comprised each interval over the whole test set.
Third row (EMERS) shows the mean and standard deviation
of the EMERS edit distance. Fourth row shows the Symbol
Error Rate (SER) of the NN mathematical symbol classifier.
Last row shows the SER obtained after parsing the ME,
taking into account structural information of the ME.

The experiment results showed that the average EMERS
metric over the test set was 2.25. It can be appreciated
that the EMERS distance increased as the size of the
ME was greater. The percentage of ME that had EMERS
distance equal to zero were 56.72%, however this metric is
pessimistic. We realized that the automatic ME evaluation
remains an open problem [10] because EMERS measure suf-
fers the ME representation ambiguity problem. Figure 2(d)
shows an example of this situation, where the same ME can
be built from different expression trees.

Regarding symbol error rate, it can be seen that structural
information improved symbol recognition. Furthermore, re-
sults showed that this improvement was greater with larger
ME, due to they contained more structural information than
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shorter ME. Final symbol error rate over the test set was
4.68%.

Figure 2 shows examples of the most common errors.
Similar symbol misrecognition is usual, specially with sym-
bols as {(1, l), (o, 0)} (a) or small characters like {, .} that
are recognized as superscripts or subscripts (b). Spatial
relations misdetection (c) is another source of errors.

VI. CONCLUSION AND FUTURE WORK

In this work we presented a printed ME recognition
system based on a two-dimensional extension of SCFG.
We defined a statistical framework to tackle this problem
by using stochastic parsing methods. We performed an
experiment over a publicly available and large database,
and the results were presented using a well-defined ME
global automatic performance measure. Results showed that
structural information of ME improved mathematical symbol
recognition.

Future work will be focused in automatic learning of
spatial relation distributions, for instance, Gaussian mixtures
could be directly incorporated to this model by providing
the Pr(A

spr−−→ BC) probability. In this way, all the issues
involved in ME recognition process will be learnt from
the training set. It also could be improved the ME used
grammar and the segmentation of touching symbols and
noise components.

(a)

(b)

(c)

(d) EMERS distance = 5.0

f=(1-|z|ˆ{2})ˆ{-\alpha}\overline{h},

f={(1-{| z |}ˆ{2})}ˆ{-\alpha}\overline{h},

Figure 2. Examples of common errors in ME recognition. For each case,
the input image and the recognized expression are displayed.
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