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Abstract—This paper describes a method for constructing the 
most efficient and robust coarse classifier from a large number 
of basic recognizers which are obtained by different 
parameters of feature extraction, different discriminant 
methods or functions, and so on. The architecture of the coarse 
classification is a sequential cascade of basic recognizers and 
reduces the candidates after each basic recognizer. Genetic 
algorithm determines the best cascade with the best speed and 
highest performance. The method is applied for on-line 
handwritten Japanese characters recognition. We produced 
201 basic recognizers of MQDF, 21 basic recognizers of 
Euclidian distance and 21 basic recognizers of the LSS method 
by changing parameters. From these basic recognizers we have 
obtained a rather simple 2 stages cascade with the result that 
the whole recognition time was reduced to 24.5% while 
keeping classification and recognition rates. 

Keywords-On-Line character recgnition; Japanese character 
recgnition; Coarse classifier; Genetic algorithm 

I.  INTRODUCTION 
With the development and proliferation of pen-based 

input devices such as tablet PCs, memo or note pads, 
electronic whiteboards and digital pens (e.g., Anoto pen), 
on-line handwritten characters recognition with high 
recognition speed and high recognition accuracy is in 
demand. Although character classifiers with high 
recognition accuracy have been reported [1-4], the demand 
for speeding up recognition is very high for portable devices 
as well as desk-top applications for which handwriting 
recognition is incorporated as one of modules.  

Large character set recognition is problematic not only 
in recognition rate but also in recognition speed. Chinese, 
Japanese or Korean have thousands of different categories, 
so that recognition takes more time than Latin alphabets or 
numerals. A general approach to improve the recognition 
speed is to perform coarse classification, pre-classification 
or candidate selection before the fine classification [5, 6]. 

Candidate selection or coarse classification started early 
in the history character recognition since the machine power 
was poor [7, 8], but still it is an essential topic. We have 
also reported “layered search spaces” (LSS) to accelerate 
recognition of a large category set [9-11]. However, the 
improvement for recognition speed is still in great demand. 

In this paper, we present a robust coarse classifier 
construction method by genetic algorithm for on-line 

recognition of handwritten Japanese characters. The method 
creates 243 basic recognizers with different classification 
costs and different classification accuracies by controlling 
the parameters of feature extraction and discriminant 
function as well as the layered search spaces (LSS) method. 
Then it uses these basic recognizers to construct a robust 
coarse classifier. It constructs a sequential cascade of basic 
recognizers and reduces the candidates after each basic 
recognizer. The parameters are estimated by the genetic 
algorithm so as to optimize the holistic character recognition 
performance.  Experimental results on the TUAT Kuchibue 
database [12] demonstrate the superiority of our method. 

The rest of this paper is organized as follows: Section 2 
presents an overview of our on-line handwritten character 
recognition system. Section 3 designs a linear structure for 
constructing a coarse classifier and Section 4 describes the 
parameter optimization method. Section 5 presents the 
experimental results and Section 6 draws our conclusion. 

 

II. RECOGNITION SYSTEM OVERVIEW 
 
We process each on-line character pattern as shown in 

Fig. 1. There are thousands of categories for the Japanese 
language. Firstly, to improve the recognition speed we 
reduce its recognition candidates by a coarse classifier for 
an on-line character input pattern. Then, we select a smaller 
category set from the candidates output by a fine classifier.  

On-line recognizer is in fact one of other modules for 
handwritten text recognition [1] and it is combined with an 
off-line recognizer [2] to obtain the robustness against 
stroke disorder as well as a segmentation module, geometric 
context processor and a linguistic postprocessor.  

As for the coarse classification, we will present its design 
and implementation in the following sections. 

Fine classification after coarse classification is based on a 

 
 

Figure 1.  On-line handwritten character recognition. 
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MRF model [4]. We extract feature points along the pen-tip 
trace from pen-down to pen-up.  We employ the coordinates 
of feature points as unary features and the differences in 
coordinates between the neighboring feature points as 
binary features. Then we use a MRF model to match the 
feature points with the states of each character class of input 
candidates and obtain similarity for each character class. We 
then select the top character categories with the largest 
similarities as the output candidates of the fine classifier.  

While fine classification in the on-line recognizer should 
exploit the on-line features since the on-line recognizer is 
combined with the off-line recognizer, coarse classification 
in the on-line recognizer can use not only on-line features 
and classification methods but also those for off-line 
recognition as well as any other methods such as LSS that 
does not evaluate the scores of character patterns. 

III. LINEAR STRUCTURE DESIGN FOR CONSTRUCTING 
COARSE CLASSIFIER 

In this section, we first describe preprocessing and 
feature extraction. Then we describe basic character 
recognizers which form a coarse classifier. Finally, we 
present the linear structure design for coarse classification 
reducing candidates one after another by the cascade of basic 
recognizers. 

A. Preprocessing and Feature Extraction 
From on-line character patterns (sequences of stroke 

coordinates), we extract direction features: histograms of 
normalized stroke direction [3]. For the coordinate 
normalization methods we apply pseudo 2D bi-moment 
normalization (P2DBMN) [13]. The local stroke direction is 
decomposed into 8 directions and from the feature map of 
each direction, 8x8 values are extracted by Gaussian blurring. 
So, the dimensionality of feature vectors is 512.  

Moreover, we also extract 6 features from each on-line 
character pattern which have been effectively applied on our 
coarse classification step. After the P2DNMN normalization, 
we extract feature points using the method by Ramner [14]. 
First, the start and end points of every stroke are picked up as 
feature points. Then, the most distant point from the straight 
line between adjacent feature points is selected as a feature 
point if the distance to the straight line is greater than a 
threshold value. This selection is done recursively until no 
more feature points are selected. The feature point extracting 
process is shown in Fig. 2. After we extract feature points we 
extract 6 features: the number of strokes, X-direction stroke 
length, Y-direction stroke length, the number of X-direction 
change times and the number of Y-direction change times as 
shown in Fig.3. We finally obtain 518 features from an on-
line character pattern. Then, to improve the Gaussianity of 
feature distribution, each value of the 518 features is 
transformed by Box-Cox transformation (also called variable 
transformation). 
 

B. Basic Character Recognizers 
The input feature vector is first reduced from 518D to nD  

by Fisher linear discriminant analysis (FLDA). Then we can 
use the nD feature vectors to create modified quadratic 
discriminant function (MQDF) recognizer [15] as follows:  
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where μi is the mean vector of class ωi, λij (j = 1, …, k) are 
the largest eigenvalues of the covariance matrix and φij are 
the corresponding eigenvectors, k denotes the number of 
principal axes and δ is a modified eigen vector which is set 
as a constant. The value of δ can been optimized on the 
training data set, however for a convenience we simply set it 
as αλaverage  where λaverage is the average of λij (i,j = 1, …, n) 
for all features of all classes and α is a constant that is larger 
than 0 and smaller than 1. 

According to the previous works [3, 16], the best 
performance is obtained when n is about 160 and k is about 
50. When n and k are smaller than their optimal values, 
although its top recognition rate is degraded, it can recognize 
an input pattern with higher speed.  

Here, we introduce the cumulative recognition rate as the 
rate that the correct class is listed within the top-N 
candidates by the recognizer. For coarse classification, we 
set N large so that the sufficiently high cumulative rate is 

Start a b

c d End

Start a b
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Figure 2.  Feature points extraction. 
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Figure 3.  On-line character features. 
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assured and the correct class is passed to the fine 
classification.  

For MQDF recognizers as coarse classifiers with smaller 
n and k than their optimal values, we set larger N 
automatically in order to retain the high cumulative rate, say 
99.9 %. 

Namely, if we set n and k smaller than their optimal 
values, it may degrade the top recognition rate but speed up 
recognition with smaller memory cost and retain the correct 
candidate within top-N by setting N large enough. Without 
experiments, we do not know which recognizer is the best 
for coarse classification. 

We have developed “layered search spaces” (LSS) to 
accelerate recognition of a large category set [9-11]. The 
basic concept is to employ pivots into a search space of 
character pattern prototypes. Given an input feature vector, it 
is compared only with the pivots and those close to it are 
selected. Then, it matched with prototypes close to the 
selected pivots. We introduce two layers. An input feature 
vector is compared with the top-layer pivots and those close 
to it are selected. Then, it is compared with the 2nd-top-layer 
pivots close to the selected top-layer pivots and a set of 
candidates close to the selected 2nd-top-layer pivots are 
selected. For LSS we can also use different feature 
dimensionality n. Under the condition that the top-N 
cumulative rate is more than 99.9%, n smaller than the 
optimal value brings lower processing cost and larger output 
candidate set while the larger n unless it is larger than the 
optimal value, brings higher recognition costs and smaller 
output candidate set. 

We can create many basic recognizers from MQDF and 
LSS by adjusting the feature extraction FLDA parameter n 
and the MQDF parameter k. 

C. Linear Structure Design 
We create 243 basic recognizers of MQDF and LSS by 

adjusting the FLDA parameter n and the MQDF parameter 
k as follows: 

 
n[21] = {01,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200} 
k[13] = {-1, 0, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50} 
 

where each value is denoted as n[l] (l =0~20) or k[j] (j 
=0~12). To represent Euclidean distance recognizers and  
LSS recognizers with different n, we use k[0] = -1 for LSS 
recognizers and k[1]= 0 for Euclidean distance recognizers. 
We can also use other values for n and k, but for the 
convenience of our implementation we only use these values. 

We design a linear structure for constructing a coarse 
classifier as shown in Fig.4.  

We assume five stages (nodes) denoted by Ni (i=1~5). 
Each node has a basic recognizer where the parameter n is 
set as n[In

i] (In
i=0~20) and k is set as k[Ik

i] (Ik
i=0~12).  Each 

recognizer of each node Ni has oi-1 input candidates and oi 
output candidates, where o0 is the number of all character 

classes. The term ui (i=1~5) denotes if the node Ni is used, so 
that Ni is not used when ui = 0, otherwise it is used. By this 
formulation, we can find the best cascade within 5 stages 
rather than just fixed 5 stages.  

For the coarse classifier, an input feature vector is input 
to each node in order from N1 to N5. For each node Ni the 
input feature vector is reduced from 518 to n[In

i], then the 
basic recognizer of Ni uses the n[In

i]  features to search oi-1 
input candidates and to compare them, then it selects oi top 
best candidates from the oi-1 input candidates as its output 
candidates. Then the oi output candidates are set as the input 
candidates of the next Ni+1. If ui = 0 and Ni is not used, it is 
skipped and its oi-1 input candidates are set as the input 
candidates of the next node Ni+1. Finally, the coarse classifier 
outputs a set of candidates and these candidates are input into 
the MRF fine classifier. 

Each node Ni has a set of parameters {In
i, Ik

i, oi, ui} whose 
value ranges are taken as an integral number as shown in 
Table 1. 

TABLE I.  THE VALUE RANGES OF PARAMETERS 

Node 
Parameters 

N1 N2 N3 N4 N5 

Ini 0~20 0~20 0~20 0~20 0~20 
Iki 0~12 1~12 1~12 1~12 1~12 
oi 1~M 1~ om_2 1~ om_3 1~ om_4 1~ om_5 
ui 1 0 or 1 0 or 1 0 or 1 0 or 1 

 
where m_i (i =2~5) in the third row in Table 1 denotes the 
number of the previous nearest used node and om_i  is the 
number of input candidates of Ni. For example, if u2 is 1 and 
u3 is 0, then N2 is used and N3 is not used, so that m_4 is 2 
and o4 can be taken from 1 to o2. 

If k[Ik
i] > n[In

i] for a node Ni, Ik
i is set as mod(Ik

i, 
max_id_k(In

i)+1) where max_id_k is a function that takes the 
index for k[13] of the maximum k which MQDF recognizer 
with n[In

i] can taken, and mod is a residue function that takes 
the residue of Ik

i /( max_id_k(In
i)+1).  

LSS recognizers are for a large input candidate set and 
their input candidates have to been fixed with the result that 
LSS recognizers can only been used at the first node N1. 
Therefore, only Ik

1 can be taken as 0. Moreover, to guarantee 
at least one node is used ui is fixed as 1. 

The five sets of parameters {In
i, Ik

i, oi, ui} (i=1~5) are 
estimated and are trained by GA so as to optimize the 
performance. When training the parameters by GA the 
values of parameters are taken automatically according to the 
value ranges as shown in Table 1. 

IV. PARAMETER OPTIMIZATION  
GA optimizes the following objective speed score 

Score_t: 
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Figure 4.  Linear structure for constructing coarse classifier. 

1092



where Tmax is a very larger constant, twhole is the recognition 
time to recognize a character, Num_train is the number of 
training data, tcoarse is the recognition time for the coarse 
classifier,  ocoarse is the number of candidates output by the 
coarse classifier, average

finet  is the average time to calculate the 
score of the input pattern with a candidate class for the fine 
classifier, ofine is the number of candidates output by the fine 
classifier, finecoarse oo

searcht −
is the search time to select ofine top best 

candidates from ocoarse candidates, I (·) is an indicator 
function which takes value 1 when the condition in the 
parentheses is satisfied, otherwise takes value 0, average

it is 
the average time to calculate the score of the input pattern 
with a candidate class for the recognizer decided by n[In

i] 
and k[Ik

i], iim oo
searcht −_  is the search time to select oi top 

candidates from om_i candidates. If the condition is not 
satisfied that the cumulative recognition correct rate of the 
output candidates of the coarse classifier is more than 99.9%, 
Score_t  is set as 0. 

We use a hash sort method to sort the scores of input 
candidates and select top best output candidates with the 
result that the search time to select top candidates is almost 0. 
In our experiment we have found for a large set of input 
candidates and output candidates, using simple sort methods 
takes very large processing time.  

An iteration of GA will evaluate many sets of parameters, 
and we have to recognize all training data by the coarse 
classifier everytime to evaluate a set of parameters. This will 
take large time and it is very difficult to obtain the training 
result. Therefore, to save computation, for each training 
sample we use all basic recognizers (243 basic recognizers) 
to recognize it and select hundreds of top best candidates for 
each basic recognizer and store them into a file before 
applying GA. We also test the average time to calculate the 
score of the input pattern with a candidate class for each 
basic recognizer and the fine classifier and then store them 
into a file. When applying GA to train the parameters we use 
the stored candidates to decide the output candidates for each 
training sample and use the stored time values to evaluate the 
speed scores. 

We treat each one of {In
i, Ik

i, oi, ui} (i=1~5) as an element 
of a chromosome. Chromosome has 20 elements. The 
parameters are estimated by GA in following steps: 

(1) Initialization: Initialize N chromosomes with 
random values between the value ranges of each parameter 
shown in Table 1, average fitness of the N chromosomes fold 
as 0 and time t as 1. 

(2) Crossover: Select two chromosomes at random 
from N chromosomes. Cross the elements between two 
random positions to produce two new chromosomes. Repeat 
until obtaining M new chromosomes. 

(3) Mutation: Change each element of N+M 
chromosomes with a random value between the value ranges 
of each parameter shown in Table 1 at a probability Pmut. 

(4) Fitness evaluation: Evaluate fitness in terms of the 
speed score in (2) on training data with the weight values 
encoded in each chromosome. 

(5) Selection: Decide the roulette probability of each 
chromosome according to its fitness. First select two 
chromosomes with the highest fitness, and then select 
chromosomes using the roulette until obtaining N new 
chromosomes. Replace the old N chromosomes with the new 
ones. 

(6) Iteration: Obtain the average fitness of the new N 
chromosomes fnew. If (fnew - fold < threshold) occurs nstop times 
or t > T, return the chromosome of the highest fitness. 
Otherwise, set fnew to fold, increment t, and go to step 2. 

We set N as 10, M as 10, Pmut as 0.03, nstop is as 25 and T 
as 10,000. 

V. EXPERIMENTS 
To evaluate the coarse classifier, we trained 243 basic 

recognizers (201 MQDF recognizers, 21 Euclidean distance 
recognizers and 21 LSS recognizers), the character 
recognizer of the MRFs (fine classifier) and the parameters 
of the linear structure for constructing the coarse classifier 
by using an on-line Japanese handwriting database called 
Nakayosi [12]. On the other hand, the performance test was 
made on an on-line Japanese handwriting database called 
Kuchibue [12]. Table 2 shows the details of the databases. 
Each character class (character category) has a different 
number of sample patterns, and kana and symbol have more 
patterns (see Table 1). To maintain balance, we selected 120 
patterns at random from each character class of the 
Kuchibue database and used the same number of sample 
patterns for each character class to evaluate the performance. 
The experiments were implemented on an Intel(R) Xeon(R) 
CPU W5590 @ 3.36 GHz 3.36 GHz (2 processers) with 12 
GB memory.  

TABLE II.  STATISTICS OF CHARACTER PATTERN DATABASES. 

Nakayosi_t Kuchibue_d
#writers 163 120

#characters 
/each writer 

Total 11,962 10,403
Kanji/Kana/

Symbol/alpha numerals 
5,643/5,068/

1,085/166
5,799/3,723/

816/65
#character 
categories 
/each writer 

Total 3,356 4,438
Kanji/Kana/

Symbol/alpha numerals 
2976/169/

146/62 
4058/169

149/62 
#average 
category 

characters 

Total 3.6 2.3
Kanji/Kana/

Symbol/alpha numerals 
1.9/30.0/

7.4/2.7
1.4/22.0

5.5/1.0
We compared the performance of three coarse classifiers: 

the proposed classifier in this paper, a LSS with Euclidean 
distance classifier [9-11] and an Euclidean distance 
classifier. The previous works always applied the optimal 
values n such as 160 to extract features and to create the 
coarse classifiers [3, 9-11]. Therefore, a LSS with a 
Euclidean distance classifier applies the  optimal values 
n=160 to extract features and uses these features to create 
the LSS recognizer and the Euclidean distance recognizer, 
then sets the LSS recognizer as the top layer classifier and 
the Euclidean distance recognizer as the second layer 
classifier. The Euclidean distance coarse classifier uses the 
same Euclidean distance recognizer without the LSS stage. 
For the two coarse classifiers we try two numbers of the 
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output top candidates: 200 and 40. We also compared the 
performance without the coarse classifier. 

We use character recognition rate Cr, average character 
feature extraction time Tfea, average character coarse 
classification time Tcoarse, average character fine 
classification time Tfiner, and average character whole 
processing time Twhole. Table 3 shows the results where 
cand denotes the number of the output top candidates. For 
reference, the trained parameters obtained by GA are as 
follows: 

{In
1, Ik

1, o1, u1}={14,01,80,1} 
{In

2, Ik
2, o2, u2}={06,06,40,1} 

{In
3, Ik

3, o3, u3}={21,04,01,0} 
{In

4, Ik
4, o4, u4}={02,02,01,0} 

{In
5, Ik

5, o5, u5}={20,02,01,0} 
From the parameters, we can see that the nodes Ni (i=3~5) 

are not used and two basic recognizers are selected to 
construct the coarse classifier. 

TABLE III.  COMPARISON OF COARSE CLASSIFIERS. 

Method 
Performance 

Our 
method 

LSS with Euclidean Euclidean Without 
CC Cand=40 Cand=200 Cand=40 Cand=200 

Cr (%) 93.88 93.38 93.55 93.55 93.67 92.75 

Time(ms) 

Tfea 0.48 0.48 0.49 0.48 0.49 0
Tcoarse 0.41 0.44 0.45 0.91 0.91 0
Tfiner 0.32 0.83 4.12 0.82 4.13 81.24
Twhole 1.25 1.79 5.11 2.24 5.58 81.24

From the results, we can see that the proposed coarse 
classifier remarkably improve the character recognition 
speed; the whole recognition time is reduced to 24.5% 
compared to the LSS with Euclidean distance classifier, 
22.4% compared to the Euclidean distance coarse classifier, 
respectively, while the numbers of the output top candidates 
are taken as 200 to keep high classification and recognition 
rates. We can see that recognition without a coarse classifier 
brings larger recognition cost. The LSS reduces the number 
of candidates from 4,438 to 986, when the recognition time 
of the fine classifier is small and the number of the 
candidates output by the Euclidean distance recognizer is 
small such as 40, the LSS with the Euclidean distance 
classifier is more effective than the Euclidean distance 
classifier. However, when the recognition time of the fine 
classifier is larger and the candidates output by the Euclidean 
distance recognizer is larger to guarantee high recognition 
accuracy, the LSS with the Euclidean distance classifier is 
not effective. 

VI. CONCLUSION 
This paper presented a robust coarse classifier 

construction method by GA for on-line recognition of 
handwritten Japanese characters. We created 243 basic 
recognizers with different classification costs and different 
classification accuracies. We made the coarse classifier as 
their sequential cascade which reduced candidates one after 
another. The parameters were estimated by a genetic 
algorithm.  The whole recognition time is reduced to 24.5%, 

that is about 1/4 of the original while keeping recognition 
rates only by the two stages of basic recognizers. 
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