
A Coarse Classifier Construction Method from a Large Number of Basic
Recognizers for On-line Recognition of Handwritten Japanese Characters

Bilan Zhu and Masaki Nakagawa

Department of Computer and Information Sciences,
Tokyo University of Agriculture and Technology,

Tokyo 184-8588, Japan
{zhubilan, nakagawa}@cc.tuat.ac.jp

Abstract—This paper describes a method for constructing the
most efficient and robust coarse classifier from a large number
of basic recognizers which are obtained by different
parameters of feature extraction, different discriminant
methods or functions, and so on. The architecture of the coarse
classification is a sequential cascade of basic recognizers and
reduces the candidates after each basic recognizer. Genetic
algorithm determines the best cascade with the best speed and
highest performance. The method is applied for on-line
handwritten Japanese characters recognition. We produced
201 basic recognizers of MQDF, 21 basic recognizers of
Euclidian distance and 21 basic recognizers of the LSS method
by changing parameters. From these basic recognizers we have
obtained a rather simple 2 stages cascade with the result that
the whole recognition time was reduced to 24.5% while
keeping classification and recognition rates.

Keywords-On-Line character recgnition; Japanese character
recgnition; Coarse classifier; Genetic algorithm

I. INTRODUCTION
With the development and proliferation of pen-based

input devices such as tablet PCs, memo or note pads,
electronic whiteboards and digital pens (e.g., Anoto pen),
on-line handwritten characters recognition with high
recognition speed and high recognition accuracy is in
demand. Although character classifiers with high
recognition accuracy have been reported [1-4], the demand
for speeding up recognition is very high for portable devices
as well as desk-top applications for which handwriting
recognition is incorporated as one of modules.

Large character set recognition is problematic not only
in recognition rate but also in recognition speed. Chinese,
Japanese or Korean have thousands of different categories,
so that recognition takes more time than Latin alphabets or
numerals. A general approach to improve the recognition
speed is to perform coarse classification, pre-classification
or candidate selection before the fine classification [5, 6].

Candidate selection or coarse classification started early
in the history character recognition since the machine power
was poor [7, 8], but still it is an essential topic. We have
also reported “layered search spaces” (LSS) to accelerate
recognition of a large category set [9-11]. However, the
improvement for recognition speed is still in great demand.

In this paper, we present a robust coarse classifier
construction method by genetic algorithm for on-line

recognition of handwritten Japanese characters. The method
creates 243 basic recognizers with different classification
costs and different classification accuracies by controlling
the parameters of feature extraction and discriminant
function as well as the layered search spaces (LSS) method.
Then it uses these basic recognizers to construct a robust
coarse classifier. It constructs a sequential cascade of basic
recognizers and reduces the candidates after each basic
recognizer. The parameters are estimated by the genetic
algorithm so as to optimize the holistic character recognition
performance. Experimental results on the TUAT Kuchibue
database [12] demonstrate the superiority of our method.

The rest of this paper is organized as follows: Section 2
presents an overview of our on-line handwritten character
recognition system. Section 3 designs a linear structure for
constructing a coarse classifier and Section 4 describes the
parameter optimization method. Section 5 presents the
experimental results and Section 6 draws our conclusion.

II. RECOGNITION SYSTEM OVERVIEW

We process each on-line character pattern as shown in

Fig. 1. There are thousands of categories for the Japanese
language. Firstly, to improve the recognition speed we
reduce its recognition candidates by a coarse classifier for
an on-line character input pattern. Then, we select a smaller
category set from the candidates output by a fine classifier.

On-line recognizer is in fact one of other modules for
handwritten text recognition [1] and it is combined with an
off-line recognizer [2] to obtain the robustness against
stroke disorder as well as a segmentation module, geometric
context processor and a linguistic postprocessor.

As for the coarse classification, we will present its design
and implementation in the following sections.

Fine classification after coarse classification is based on a

Figure 1. On-line handwritten character recognition.

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.220

1090

MRF model [4]. We extract feature points along the pen-tip
trace from pen-down to pen-up. We employ the coordinates
of feature points as unary features and the differences in
coordinates between the neighboring feature points as
binary features. Then we use a MRF model to match the
feature points with the states of each character class of input
candidates and obtain similarity for each character class. We
then select the top character categories with the largest
similarities as the output candidates of the fine classifier.

While fine classification in the on-line recognizer should
exploit the on-line features since the on-line recognizer is
combined with the off-line recognizer, coarse classification
in the on-line recognizer can use not only on-line features
and classification methods but also those for off-line
recognition as well as any other methods such as LSS that
does not evaluate the scores of character patterns.

III. LINEAR STRUCTURE DESIGN FOR CONSTRUCTING
COARSE CLASSIFIER

In this section, we first describe preprocessing and
feature extraction. Then we describe basic character
recognizers which form a coarse classifier. Finally, we
present the linear structure design for coarse classification
reducing candidates one after another by the cascade of basic
recognizers.

A. Preprocessing and Feature Extraction
From on-line character patterns (sequences of stroke

coordinates), we extract direction features: histograms of
normalized stroke direction [3]. For the coordinate
normalization methods we apply pseudo 2D bi-moment
normalization (P2DBMN) [13]. The local stroke direction is
decomposed into 8 directions and from the feature map of
each direction, 8x8 values are extracted by Gaussian blurring.
So, the dimensionality of feature vectors is 512.

Moreover, we also extract 6 features from each on-line
character pattern which have been effectively applied on our
coarse classification step. After the P2DNMN normalization,
we extract feature points using the method by Ramner [14].
First, the start and end points of every stroke are picked up as
feature points. Then, the most distant point from the straight
line between adjacent feature points is selected as a feature
point if the distance to the straight line is greater than a
threshold value. This selection is done recursively until no
more feature points are selected. The feature point extracting
process is shown in Fig. 2. After we extract feature points we
extract 6 features: the number of strokes, X-direction stroke
length, Y-direction stroke length, the number of X-direction
change times and the number of Y-direction change times as
shown in Fig.3. We finally obtain 518 features from an on-
line character pattern. Then, to improve the Gaussianity of
feature distribution, each value of the 518 features is
transformed by Box-Cox transformation (also called variable
transformation).

B. Basic Character Recognizers
The input feature vector is first reduced from 518D to nD

by Fisher linear discriminant analysis (FLDA). Then we can
use the nD feature vectors to create modified quadratic
discriminant function (MQDF) recognizer [15] as follows:

δλ

δλ

log)(log})]([

{)]([),(

kn

g

k

j
ij

k

j
i

T
ij

i

k

j
i

T
ij

ij
i

−++−−

−+−=

∑∑

∑

==

=

11

2

2

1

2
2

11

μxφ

μxμxφωx

　

 (1)

where μi is the mean vector of class ωi, λij (j = 1, …, k) are
the largest eigenvalues of the covariance matrix and φij are
the corresponding eigenvectors, k denotes the number of
principal axes and δ is a modified eigen vector which is set
as a constant. The value of δ can been optimized on the
training data set, however for a convenience we simply set it
as αλaverage where λaverage is the average of λij (i,j = 1, …, n)
for all features of all classes and α is a constant that is larger
than 0 and smaller than 1.

According to the previous works [3, 16], the best
performance is obtained when n is about 160 and k is about
50. When n and k are smaller than their optimal values,
although its top recognition rate is degraded, it can recognize
an input pattern with higher speed.

Here, we introduce the cumulative recognition rate as the
rate that the correct class is listed within the top-N
candidates by the recognizer. For coarse classification, we
set N large so that the sufficiently high cumulative rate is

Start a b

c d End

Start a b

c d End

Figure 2. Feature points extraction.

Ｙ１

Ｘ１ Ｘ２ Ｘ３

Ｙ２

Ｙ３

Ｘ＝Ｘ１＋Ｘ２＋Ｘ３

Ｙ＝Ｙ１＋Ｙ２＋３

(a) Stroke length

Ｘdirection：once
Ｙdirection: three times

(b) Direction change times

Ｙ１

Ｘ１ Ｘ２ Ｘ３

Ｙ２

Ｙ３

Ｘ＝Ｘ１＋Ｘ２＋Ｘ３

Ｙ＝Ｙ１＋Ｙ２＋３

(a) Stroke length

Ｘdirection：once
Ｙdirection: three times

(b) Direction change times
Figure 3. On-line character features.

1091

assured and the correct class is passed to the fine
classification.

For MQDF recognizers as coarse classifiers with smaller
n and k than their optimal values, we set larger N
automatically in order to retain the high cumulative rate, say
99.9 %.

Namely, if we set n and k smaller than their optimal
values, it may degrade the top recognition rate but speed up
recognition with smaller memory cost and retain the correct
candidate within top-N by setting N large enough. Without
experiments, we do not know which recognizer is the best
for coarse classification.

We have developed “layered search spaces” (LSS) to
accelerate recognition of a large category set [9-11]. The
basic concept is to employ pivots into a search space of
character pattern prototypes. Given an input feature vector, it
is compared only with the pivots and those close to it are
selected. Then, it matched with prototypes close to the
selected pivots. We introduce two layers. An input feature
vector is compared with the top-layer pivots and those close
to it are selected. Then, it is compared with the 2nd-top-layer
pivots close to the selected top-layer pivots and a set of
candidates close to the selected 2nd-top-layer pivots are
selected. For LSS we can also use different feature
dimensionality n. Under the condition that the top-N
cumulative rate is more than 99.9%, n smaller than the
optimal value brings lower processing cost and larger output
candidate set while the larger n unless it is larger than the
optimal value, brings higher recognition costs and smaller
output candidate set.

We can create many basic recognizers from MQDF and
LSS by adjusting the feature extraction FLDA parameter n
and the MQDF parameter k.

C. Linear Structure Design
We create 243 basic recognizers of MQDF and LSS by

adjusting the FLDA parameter n and the MQDF parameter
k as follows:

n[21] = {01,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200}
k[13] = {-1, 0, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}

where each value is denoted as n[l] (l =0~20) or k[j] (j
=0~12). To represent Euclidean distance recognizers and
LSS recognizers with different n, we use k[0] = -1 for LSS
recognizers and k[1]= 0 for Euclidean distance recognizers.
We can also use other values for n and k, but for the
convenience of our implementation we only use these values.

We design a linear structure for constructing a coarse
classifier as shown in Fig.4.

We assume five stages (nodes) denoted by Ni (i=1~5).
Each node has a basic recognizer where the parameter n is
set as n[In

i] (In
i=0~20) and k is set as k[Ik

i] (Ik
i=0~12). Each

recognizer of each node Ni has oi-1 input candidates and oi
output candidates, where o0 is the number of all character

classes. The term ui (i=1~5) denotes if the node Ni is used, so
that Ni is not used when ui = 0, otherwise it is used. By this
formulation, we can find the best cascade within 5 stages
rather than just fixed 5 stages.

For the coarse classifier, an input feature vector is input
to each node in order from N1 to N5. For each node Ni the
input feature vector is reduced from 518 to n[In

i], then the
basic recognizer of Ni uses the n[In

i] features to search oi-1
input candidates and to compare them, then it selects oi top
best candidates from the oi-1 input candidates as its output
candidates. Then the oi output candidates are set as the input
candidates of the next Ni+1. If ui = 0 and Ni is not used, it is
skipped and its oi-1 input candidates are set as the input
candidates of the next node Ni+1. Finally, the coarse classifier
outputs a set of candidates and these candidates are input into
the MRF fine classifier.

Each node Ni has a set of parameters {In
i, Ik

i, oi, ui} whose
value ranges are taken as an integral number as shown in
Table 1.

TABLE I. THE VALUE RANGES OF PARAMETERS

Node
Parameters

N1 N2 N3 N4 N5

Ini 0~20 0~20 0~20 0~20 0~20
Iki 0~12 1~12 1~12 1~12 1~12
oi 1~M 1~ om_2 1~ om_3 1~ om_4 1~ om_5
ui 1 0 or 1 0 or 1 0 or 1 0 or 1

where m_i (i =2~5) in the third row in Table 1 denotes the
number of the previous nearest used node and om_i is the
number of input candidates of Ni. For example, if u2 is 1 and
u3 is 0, then N2 is used and N3 is not used, so that m_4 is 2
and o4 can be taken from 1 to o2.

If k[Ik
i] > n[In

i] for a node Ni, Ik
i is set as mod(Ik

i,
max_id_k(In

i)+1) where max_id_k is a function that takes the
index for k[13] of the maximum k which MQDF recognizer
with n[In

i] can taken, and mod is a residue function that takes
the residue of Ik

i /(max_id_k(In
i)+1).

LSS recognizers are for a large input candidate set and
their input candidates have to been fixed with the result that
LSS recognizers can only been used at the first node N1.
Therefore, only Ik

1 can be taken as 0. Moreover, to guarantee
at least one node is used ui is fixed as 1.

The five sets of parameters {In
i, Ik

i, oi, ui} (i=1~5) are
estimated and are trained by GA so as to optimize the
performance. When training the parameters by GA the
values of parameters are taken automatically according to the
value ranges as shown in Table 1.

IV. PARAMETER OPTIMIZATION
GA optimizes the following objective speed score

Score_t:

∑
=

−

−

=+=

++=

−=

5

1
_

max

]1[)(

)(

_

i
i

oo
search

average
iimcoarse

oo
search

average
finecoarsecoarsewhole

whole

uIttot

ttott

trainNumtttScore

iim

finecoarse
 (2)

Figure 4. Linear structure for constructing coarse classifier.

1092

where Tmax is a very larger constant, twhole is the recognition
time to recognize a character, Num_train is the number of
training data, tcoarse is the recognition time for the coarse
classifier, ocoarse is the number of candidates output by the
coarse classifier, average

finet is the average time to calculate the
score of the input pattern with a candidate class for the fine
classifier, ofine is the number of candidates output by the fine
classifier, finecoarse oo

searcht −
is the search time to select ofine top best

candidates from ocoarse candidates, I (·) is an indicator
function which takes value 1 when the condition in the
parentheses is satisfied, otherwise takes value 0, average

it is
the average time to calculate the score of the input pattern
with a candidate class for the recognizer decided by n[In

i]
and k[Ik

i], iim oo
searcht −_ is the search time to select oi top

candidates from om_i candidates. If the condition is not
satisfied that the cumulative recognition correct rate of the
output candidates of the coarse classifier is more than 99.9%,
Score_t is set as 0.

We use a hash sort method to sort the scores of input
candidates and select top best output candidates with the
result that the search time to select top candidates is almost 0.
In our experiment we have found for a large set of input
candidates and output candidates, using simple sort methods
takes very large processing time.

An iteration of GA will evaluate many sets of parameters,
and we have to recognize all training data by the coarse
classifier everytime to evaluate a set of parameters. This will
take large time and it is very difficult to obtain the training
result. Therefore, to save computation, for each training
sample we use all basic recognizers (243 basic recognizers)
to recognize it and select hundreds of top best candidates for
each basic recognizer and store them into a file before
applying GA. We also test the average time to calculate the
score of the input pattern with a candidate class for each
basic recognizer and the fine classifier and then store them
into a file. When applying GA to train the parameters we use
the stored candidates to decide the output candidates for each
training sample and use the stored time values to evaluate the
speed scores.

We treat each one of {In
i, Ik

i, oi, ui} (i=1~5) as an element
of a chromosome. Chromosome has 20 elements. The
parameters are estimated by GA in following steps:

(1) Initialization: Initialize N chromosomes with
random values between the value ranges of each parameter
shown in Table 1, average fitness of the N chromosomes fold
as 0 and time t as 1.

(2) Crossover: Select two chromosomes at random
from N chromosomes. Cross the elements between two
random positions to produce two new chromosomes. Repeat
until obtaining M new chromosomes.

(3) Mutation: Change each element of N+M
chromosomes with a random value between the value ranges
of each parameter shown in Table 1 at a probability Pmut.

(4) Fitness evaluation: Evaluate fitness in terms of the
speed score in (2) on training data with the weight values
encoded in each chromosome.

(5) Selection: Decide the roulette probability of each
chromosome according to its fitness. First select two
chromosomes with the highest fitness, and then select
chromosomes using the roulette until obtaining N new
chromosomes. Replace the old N chromosomes with the new
ones.

(6) Iteration: Obtain the average fitness of the new N
chromosomes fnew. If (fnew - fold < threshold) occurs nstop times
or t > T, return the chromosome of the highest fitness.
Otherwise, set fnew to fold, increment t, and go to step 2.

We set N as 10, M as 10, Pmut as 0.03, nstop is as 25 and T
as 10,000.

V. EXPERIMENTS
To evaluate the coarse classifier, we trained 243 basic

recognizers (201 MQDF recognizers, 21 Euclidean distance
recognizers and 21 LSS recognizers), the character
recognizer of the MRFs (fine classifier) and the parameters
of the linear structure for constructing the coarse classifier
by using an on-line Japanese handwriting database called
Nakayosi [12]. On the other hand, the performance test was
made on an on-line Japanese handwriting database called
Kuchibue [12]. Table 2 shows the details of the databases.
Each character class (character category) has a different
number of sample patterns, and kana and symbol have more
patterns (see Table 1). To maintain balance, we selected 120
patterns at random from each character class of the
Kuchibue database and used the same number of sample
patterns for each character class to evaluate the performance.
The experiments were implemented on an Intel(R) Xeon(R)
CPU W5590 @ 3.36 GHz 3.36 GHz (2 processers) with 12
GB memory.

TABLE II. STATISTICS OF CHARACTER PATTERN DATABASES.

Nakayosi_t Kuchibue_d
#writers 163 120

#characters
/each writer

Total 11,962 10,403
Kanji/Kana/

Symbol/alpha numerals
5,643/5,068/

1,085/166
5,799/3,723/

816/65
#character
categories
/each writer

Total 3,356 4,438
Kanji/Kana/

Symbol/alpha numerals
2976/169/

146/62
4058/169

149/62
#average
category

characters

Total 3.6 2.3
Kanji/Kana/

Symbol/alpha numerals
1.9/30.0/

7.4/2.7
1.4/22.0

5.5/1.0
We compared the performance of three coarse classifiers:

the proposed classifier in this paper, a LSS with Euclidean
distance classifier [9-11] and an Euclidean distance
classifier. The previous works always applied the optimal
values n such as 160 to extract features and to create the
coarse classifiers [3, 9-11]. Therefore, a LSS with a
Euclidean distance classifier applies the optimal values
n=160 to extract features and uses these features to create
the LSS recognizer and the Euclidean distance recognizer,
then sets the LSS recognizer as the top layer classifier and
the Euclidean distance recognizer as the second layer
classifier. The Euclidean distance coarse classifier uses the
same Euclidean distance recognizer without the LSS stage.
For the two coarse classifiers we try two numbers of the

1093

output top candidates: 200 and 40. We also compared the
performance without the coarse classifier.

We use character recognition rate Cr, average character
feature extraction time Tfea, average character coarse
classification time Tcoarse, average character fine
classification time Tfiner, and average character whole
processing time Twhole. Table 3 shows the results where
cand denotes the number of the output top candidates. For
reference, the trained parameters obtained by GA are as
follows:

{In
1, Ik

1, o1, u1}={14,01,80,1}
{In

2, Ik
2, o2, u2}={06,06,40,1}

{In
3, Ik

3, o3, u3}={21,04,01,0}
{In

4, Ik
4, o4, u4}={02,02,01,0}

{In
5, Ik

5, o5, u5}={20,02,01,0}
From the parameters, we can see that the nodes Ni (i=3~5)

are not used and two basic recognizers are selected to
construct the coarse classifier.

TABLE III. COMPARISON OF COARSE CLASSIFIERS.

Method
Performance

Our
method

LSS with Euclidean Euclidean Without
CC Cand=40 Cand=200 Cand=40 Cand=200

Cr (%) 93.88 93.38 93.55 93.55 93.67 92.75

Time(ms)

Tfea 0.48 0.48 0.49 0.48 0.49 0
Tcoarse 0.41 0.44 0.45 0.91 0.91 0
Tfiner 0.32 0.83 4.12 0.82 4.13 81.24
Twhole 1.25 1.79 5.11 2.24 5.58 81.24

From the results, we can see that the proposed coarse
classifier remarkably improve the character recognition
speed; the whole recognition time is reduced to 24.5%
compared to the LSS with Euclidean distance classifier,
22.4% compared to the Euclidean distance coarse classifier,
respectively, while the numbers of the output top candidates
are taken as 200 to keep high classification and recognition
rates. We can see that recognition without a coarse classifier
brings larger recognition cost. The LSS reduces the number
of candidates from 4,438 to 986, when the recognition time
of the fine classifier is small and the number of the
candidates output by the Euclidean distance recognizer is
small such as 40, the LSS with the Euclidean distance
classifier is more effective than the Euclidean distance
classifier. However, when the recognition time of the fine
classifier is larger and the candidates output by the Euclidean
distance recognizer is larger to guarantee high recognition
accuracy, the LSS with the Euclidean distance classifier is
not effective.

VI. CONCLUSION
This paper presented a robust coarse classifier

construction method by GA for on-line recognition of
handwritten Japanese characters. We created 243 basic
recognizers with different classification costs and different
classification accuracies. We made the coarse classifier as
their sequential cascade which reduced candidates one after
another. The parameters were estimated by a genetic
algorithm. The whole recognition time is reduced to 24.5%,

that is about 1/4 of the original while keeping recognition
rates only by the two stages of basic recognizers.

ACKNOWLEDGMENT
This work is being partially supported by the R&D fund

for "development of pen & paper based user interaction"
under Japan Science and Technology Agency.

REFERENCES
[1] B. Zhu, X.-D. Zhou, C.-L. Liu and M. Nakagawa: A robust model for

on-line handwritten Japanese text recognition, International Journal
on Document Analysis and Recognition (IJDAR),Vol. 13, No. 2,
pp.121-131, 2010.

[2] H. Oda, B. Zhu, J. Tokuno, M. Onuma, A. Kitadai and M. Nakagawa:
A compact on-line and off-line combined recognizer. Proc. 10th
International Workshop on Frontiers in Handwriting Recognition, pp.
133–138. La Baule, France, 2006.

[3] C.-L. Liu and X.-D. Zhou: Online Japanese caracter recognition using
trajectory-based normalization and direction feature extraction, Proc.
10th International Workshop on Frontiers in Handwriting
Recognition, pp.217-222, 2006.

[4] B. Zhu and M. Nakagawa: A MRF Model with parameters
optimization by CRF for on-line recognition of handwritten Japanese
characters, Proc. Document Recognition and Retrieval XVIII (DRR)
that is part of IS&T/SPIE Electronic Imaging, San Jose, USA, 2011.

[5] C.-L. Liu and M. Nakagawa: Precise candidate selection for large
character set recognition by confidence evaluation, IEEE Trans.
Pattern Analysis and Machine Intelligence, 22 (6), 636-642, 2000.

[6] Y. Waizumi, N. Kato, K. Saruta and Y. Nemoto: High speed and high
accuracy rough classification for handwritten characters using
hierarchical learning vector quantization (in Japanese), Technical
Report of IEICE, Vol.97, No.40, PRMU, pp.1-8, 1997.

[7] S. Mori, K. Yamamoto and M. Yasuda: Research on machine
recognition of handprinted characters, IEEE Trans. Pattern Analysis
and Machine Intelligence, vol.6, pp.386-405, 1984.

[8] T. H. Hildebrandt and W. Liu: Optical recognition of handwritten
Chinese characters: Advances since 1980, Pattern Recognition,
vol.26, no.2, pp.205-225, 1993.

[9] Y. Yang and M. Nakagawa: Acclerating large character set
recognition using pivots, Proc. 8th International Conference
Document Analysis and Recognition, Edinburgh, pp.262-267, 2003.

[10] Y. Yang, B. Zhu and M. Nakagawa: Structuring search space for
accelerating large set character recognition, IEICE Trans. Information
and Systems, E88-D (8), pp.1799-1806, 2005.

[11] Y. Yang and M. Nakagawa: Improving the structuring search space
method for accelerating large set character recognition, Proc. 9th
International Workshop on Frontiers in Handwriting Recognition,
Tokyo, 251-256, 2004.

[12] M. Nakagawa and K. Matsumoto: Collection of on-line handwritten
Japanese character pattern databases and their analysis, International
Journal on Document Analysis and Recognition (IJDAR), 7(1),
pp.69-81, 2004.

[13] C.-L. Liu and K. Marukawa: Pseudo two dimensional shape
normalization methods for handwritten Chinese character recognition,
Pattern Recognition, 38(12), pp.2242–2255, 2005.

[14] U. Ramer: An iterative procedure for the polygonal approximation of
plan closed curves, Computer Graphics and Image Processing, vol. 1,
pp.244-256, 1972.

[15] F. Kimura: Modified quadratic discriminant function and the
application to Chinese characters, IEEE Trans. Pattern Analysis and
Machine Intelligence, 9 (1), pp.149-153, 1987.

C.-L. Liu: High accuracy handwritten Chinese character recognition using
quadratic classifiers with discriminative feature extraction, Proc. 18th
International Conference on Pattern Recognition, vol. 2, Hong Kong,
pp.942–945, 2006.

1094

