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Abstract—The labeling of large sets of images for training
or testing analysis systems can be a very costly and time-
consuming process. Multiple instance learning (MIL) is a
generalization of traditional supervised learning which relaxes
the need for exact labels on training instances. Instead, the
labels are required only for a set of instances known as bags. In
this paper, we apply MIL to the retrieval and localization of sig-
natures and the retrieval of images containing machine-printed
text, and show that a gain of 15-20% in performance can be
achieved over the supervised learning with weak-labeling. We
also compare our approach to supervised learning with fully
annotated training data and report a competitive accuracy for
MIL. Using our experiments on real-world datasets, we show
that MIL is a good alternative when the training data has only
document-level annotation.

Keywords-Document Image Labeling, Signature Detection,
Machine-print Documents

I. INTRODUCTION

Search and retrieval of relevant documents from a large
collection of document images has been a problem of inter-
est for many years. One approach for solving this problem is
to use supervised learning to train a classifier for detecting
the documents of interest, using the features extracted from
the image. Since images may contain multiple, possibly
diverse document objects like logos, signatures, figures and
tables, obtaining a consistent, global descriptor is difficult.
Hence, supervised learning based approaches often segment
the image into different zones and attempt to classify each
zone. This requires the training images to be fully annotated.
For example, for the retrieval of signature documents, a
classifier is trained to classify each zone as signature or
non-signature. This requires a set of training images with
the label for each signature zone. Similarly, a multi-class
labeling requires all zones to be labeled. For large datasets
containing thousands of document images, the number of
segments can be significant. It is extremely costly and time-
consuming to manually label all the segments. Moreover,
in the future, if one employs another segmentation method,
then re-labeling of segments may be required.

Multiple Instance Learning(MIL) has been proposed as
an alternative to supervised learning when the complete
knowledge of the labels is not available [1]. In contrast to
supervised learning, in MIL, labels are required only for
groups of instances called bags. A document is represented
by a bag of instances, where each instance is a descriptor
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Figure 1.  Segments of a Signature and a Non-Signature page from
Tobacco-800 dataset using Voronoi++. Instances from a Signature page
form a positive bag whereas instances from a Non-Signature page form a
negative bag.

for one of the regions after segmentation. In the binary
classification case, a bag is assigned a positive label if
at least one of the instances in it is from the positive
class. It is labeled negative only if all the instances in it
are negative. Figure 1 illustrates example of a signature
detection problem. In this case an image with a signature in
it contributes a positive bag, and an image with no signatures
contributes a negative bag. We refer to this as weak-labeling.
The goal of MIL is to learn models using this weakly-labeled
data to classify test bags and/or instances (Figure 2).

In this paper we apply MIL for two different document
labeling problems, and show that MIL is a good alternative
when the exact labels of training instances (zones) are not
available. We first employ different MIL approaches for
signature detection and compare it with Support Vector Ma-
chines(SVM) [8]. We report results on Tobacco-800 dataset
[15] which has evolved as a standard dataset for signature
detection and has been used in previous work [4], [5].
We show that MIL achieves almost the same accuracy for
signature zone detection as obtained by supervised learning
(using zone-level annotation). We then perform a similar
comparison for the detection of machine-printed text on a
set Arabic document images. We use shape-codebook based
features to demonstrate that MIL is competitive with super-
vised learning. A gain of 15-20% over the weakly-labeled
supervised classification is obtained for both signature and
machine-print text detection.

The remainder of the paper is organized as follows. We
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Figure 2. Comparison of supervised learning and multi-instance learning.
The classifier is learned over bags instead of instances in MIL.

briefly review the selected MIL algorithms and applications
in Section II. Section III discusses the labeling of signature
and machine-print documents using the MIL framework.
Section IV describes our experimental results and we con-
clude the paper in Section V.

II. PREVIOUS WORK

In the last few years, many algorithms have been pro-
posed to learn models in a multiple instance setting. Some
algorithms are specifically designed to learn the multiple-
instance concepts whereas others are adapted from standard
single-instance learning algorithms. A detailed survey of the
various algorithms for MIL is given in [3]. In this section,
we briefly review a few methods and applications.

The first work on MIL was done for drug activity pre-
diction [1]. The problem was to determine if a given drug
molecule will strongly bind to a target protein. Dietterich et
al. showed that the MIL approach outperforms the super-
vised learning method which does not take into account the
multiple-instance nature of the problem. Another interesting
application of MIL is in content-based image retrieval and
categorization [2]. Natural scene images usually contain
multiple objects and classifying image based on a global
description is often difficult. However, this naturally fits into
the MIL setting where each image can be considered as
a bag and segments in the image as instances. Andrews
et al. [2] reformulated the SVM for MIL and presented
impressive results for the detection of a tiger, an elephant and
a fox in images. They introduced two approaches namely
mi-SVM and MI-SVM, where mi-SVM is for instance level
classification and MI-SVM is for bag level classification.
In mi-SVM, the instance labels y; are considered hidden
variables subject to constraints imposed by the bag labels Y7.
The goal is to maximize the instance margin jointly over the
unknown instance labels and the kernel parameters. Hence
the same formulation is used as SVM, but the minimization
is done over the individual labels as well, subject to the
constraint that in a positive bag, at least one instant should
have a positive label and all instances should have negative
labels in a negative bag. In MI-SVM, the parameters of the
model are obtained by maximizing the bag margin which
is defined as the margin of the most positive instance in a

positive bag and the least negative instance in a negative
bag.

Diverse density (DD), proposed by Maron and Lozano-
Perez [6], is one of the best known frameworks for MIL.
The purpose of this approach is to learn a concept that
is close to at least one instance in each positive bag, but
far from all instances in the negative bags. The hyperplane
learned describes a region of instance space that is not only
dense in instances from positive bags, but also diverse in
that it describes every positive bag. MIDD maximizes the
bag-level likelihood using the noisy-or model at training
time. The label of a new bag is the class that receives
maximum probability. Ray et al. [13] designed Multiple
Instance Logistic Regression (MILR) to learn linear models
in an MI setting, which is derived by generalizing DD
framework.

III. DOCUMENT IMAGE LABELING
A. Signatures

Signatures provide a unique way of indexing a large set of
forensic and business documents [5]. Searching documents
containing signatures is pivotal for signature based indexing
and retrieval. We pose the problem of detecting signatures
in a large collection of document images as a MIL problem,
where a positive bag consists of instances extracted from the
zones of images containing signatures. Zones of document
images which do not contain any signature contribute to
negative bags. The classifier is trained to classify a given
image into a positive or a negative bag. In each bag, the
labels of instances are also obtained and a positive instance
label corresponds to a signature zone.

We segment the training images into different regions
using a Voronoi based segmentation [7]. Our assumption is
that the signatures are segmented to one of the regions al-
though exact segmentation is not required. Some documents
may have multiple signatures in them. The segmentation
boundary shown in Figure 1 is obtained using this method.

Chain-code based Histogram Features: We generate
chain-code features at the zone level after a simple pre-
processing based on size, aspect-ratio and mass of com-
ponents to filter noise-components. The gradient at each
pixel of the edge-detected image is computed using a Sobel
operator (Figure 3(a)). We then use eight bins for the
gradient direction and a 3x3 sampling region to obtain a
histogram at each gradient direction. This gives us a total
of 72 features for each component (Figure 3(b)). Using
SimpleKMeans clustering method available in Weka [14],
we cluster the extracted features from a set of representative
zones and find an exemplar for each cluster (Figure 3(c)).
This provides us with codewords, which we use to obtain
histogram features for each zone. In a given zone, we find
the chain-code of each connected-component and obtain the
corresponding codeword closest to it based on the Kullback—
Leibler divergence. We then compute the frequency of each
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Figure 3. (a) Edge-map of a character and illustration of orientation
(b) Histogram of orientation(c) Construction of a codebook (d) Histogram
features for signature detection

codeword to obtain a normalized histogram (Figure 3(d)).
The main motivation behind using gradient features is that
signatures are written in a free-flowing manner, unlike other
content such as graphics or printed-text. Similar features
were used by Chanda et al. [9] for sparse machine-print and
handwritten text classification. We also use the mean and
the variance of the width, height and area of components in
the zone as additional features.

B. Machine-printed Text

Since the pre-processing and character recognition tech-
niques may be different for machine-print and handwritten
text, it is often necessary to identify the two types of text
before feeding them to their respective processing systems.
We formulate the problem of detecting printed pages among
a large set of handwritten and printed documents as multi-
instance learning, where instances coming from the printed
pages form positive bags and the remaining pages give rise
to negative bags.

Shape-Codebook Based Features: As with signatures,
we first extract zones present in the image using Vornoi
based segmentation [7], then obtain a list of edges present
in each zone using a Canny edge detector [12]. Within a
specified tolerance, we find a similar list of line segments by
fitting a line to each edge segment. Every triplet within each
connected-component forms one of the four basic Three-
Adjacent-Segment (TAS) types defined as shown in Figure
4(a). The first segment (s1) is the one with the midpoint
closest to the centroid. The second and third segments are
ordered from left to right. An example ordering of a typical
TAS is shown in Figure 4(b). The descriptor of a TAS is
composed of 10 values given as follows:

R T

Ng' Ny Ny’ Ng

where r; = (¥, r!) denotes the vector from the midpoint
of s to the midpoint of s;. 6; and [; represent the orientation
and length of the segment s;. Ny is the distance between the
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Figure 4. (a) Four basic TAS types (b) Ordering in a TAS (c) Histogram
features using learned codewords

two farthest midpoints and used as a normalization factor.
The descriptor is rotation and scale invariant. These local
shape features were first proposed by Ferrari et al. for object
detection [10] and have been shown effective for language
identification and printed page detection [11].

We select a subset of printed and handwritten text zones
for creating a shape codebook for both printed and hand-
written Arabic. Using SimpleKMeans [14], we cluster the
TAS features extracted from the zones and obtain exem-
plary codeword in each cluster. We also find the cluster
radius which is defined as the maximum distance from
the exemplary codeword to all the other TASs within the
cluster. Finally, we compute a descriptor for each zone that
provides statistics of the frequency of each TAS feature
occurrence. We increment the number of occurrences of
the codeword which is nearest to detected TAS feature
and within corresponding cluster radius. We concatenate
the two normalized histograms obtained using printed and
handwritten codebooks to obtain a single feature vector for
each zone (Figure 4(c)).

IV. EXPERIMENTS AND EVALUATION

Datasets: For signature experiments, we used a randomly
selected subset of 600 images from the Tobacco-800 dataset
available at [15]. This dataset has mainly multi-page busi-
ness documents many of which contain signatures. For
machine-print text detection we used a subset of 800 Arabic
document images from the dataset used in [11]. Images in
this dataset have primarily printed and handwritten Arabic,
in addition to logos, figures, signatures and stamps. We
partitioned the datasets into a training set (70%) and a test
set (30%).

Metrics: For evaluation, we compute precision and recall
values along with the F'/-score to evaluate and compare MIL
methods. If a detected zone has the same label as its ground-
truth then it is counted as a true positive (TP), otherwise it
is counted as a false positive (FP). False negatives (FN) are
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Figure 5. Plots of Fl-scores for signature zone detection
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Figure 6. Plots of Fl-scores for signature page detection

those zones which are missed by the method. Using these

counts we obtain the precision, recall and FI-score using
the following equations:
TP TP
PT@CiSiOTL = W, Recall = m (1)
Fyscore — 2 % Precision x Recall @)

Precision + Recall

We used the Weka data mining toolbox [14] to compare
various MIL algorithms with SVM. In all our experiments,
we used the default polynomial kernel for SVM. Of the
several MIL implementations available in the package, we
used three methods: MISMO, MIDD and MILR. Figure 5
and Figure 6 show the plot of Fl-scores of these methods
for signature detection. For comparison, we trained two
SVM classifiers for zone classification, one with the correct
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Figure 8. Plots of Fl-score for machine-print page detection

labels of zones and another with the label of its docu-
ment(signature or non-signature). The first classifier uses the
correct labels of zones in the training set to learn a model for
zone-classification, whereas second classifier uses only the
document-level annotation. During evaluation, if any of the
instances in the test image was classified as signature, the
image was considered as a signature page. If all the instances
were classified as non-signature, the page was given a non-
signature label. A similar protocol was used for obtaining
the supervised learning performances of machine-print page
detection. The plot of Fl-scores of both SVM classifiers is
shown for comparison.

MIDD gives the best performance among all of the
MIL classifiers, with a precision of 96.4% and a recall of
94.2% for signature zone detection. As shown, the accuracy
achieved by MIDD is very close to the accuracy of SVM
using correct zone labels (96%). A similar plot for machine-



Table 1
TIME (IN SECONDS) FOR MIL METHODS AND SVM (SMO)

Methods MISMO | MIDD | MILR | SVM
Training Time 31.2 262.6 2.77 2.2
Testing Time 2.1 4.6 1.2 1.4

print documents is shown in Figure 7 and Figure 8. In
this case, MIDD also achieved the best F1-score of 83.2%,
while the accuracy obtained by SVM using zone labels
was 86%. For machine-print page detection, we obtained
a high precision (94.2%) and a low recall (74%) using
MIDD, which is consistent with the supervised learning
result reported on this dataset [11]. Upon inspection of
error images, we found that the poor recall is due to those
documents, where the printed-text content is limited. These
images were missed by both MIL and supervised classifiers.
The performance of SVM zone-classification with only
document-level annotation is poor in all the cases. This
is expected, as the classifier did not have exact labels for
the zones in signature-pages. Compared to this weakly-
labeled supervised learning, MIL achieves a gain of 15-
20%. The higher accuracy of zone classification as compared
to document classification is attributed to the MIL setting,
in which for a document to be classified correctly the
condition needs to be satisfied exactly. For example, for a
non-signature page all the segments need to be classified as
negative instance.

Table I shows the average time taken (in seconds) by
each MIL method and SVM on the training and testing
data. Although, MIL methods optimize over both bag and
instance labels, the training time is comparable to supervised
learning. MIDD, which gave the best performance for clas-
sification, has much higher training time compared to other
methods, but the testing time is comparable. MILR shows a
good performance for both time and detection accuracy.

V. CONCLUSION

In this work, we demonstrated the advantages of us-
ing Multiple instance learning for two document image
classification problems. Although the multiple-instance set-
ting leads to a harder optimization problem, even simple
approaches for solving it offer competitive results when
compared to the supervised learning. To see the effectiveness
of MIL, we considered problems of different nature and
tried different features on real-world data sets. In both the
applications, we found that MIL provides a gain of 15-20%
over the weakly-labeled supervised classification. The results
are competitive to those obtained from supervised learning
with fully-annotated data. In the future, we would like to
apply MIL for logo and stamp detection.
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