
A Gradient Vector Flow-Based Method for Video Character Segmentation

Trung Quy Phan, Palaiahnakote Shivakumara, Bolan Su and Chew Lim Tan
School of Computing, National University of Singapore

{phanquyt, shiva, subolan, tancl}@comp.nus.edu.sg

Abstract—In this paper, we propose a method based on
gradient vector flow for video character segmentation. By
formulating character segmentation as a minimum cost path
finding problem, the proposed method allows curved
segmentation paths and thus it is able to segment overlapping
characters and touching characters due to low contrast and
complex background. Gradient vector flow is used in a new
way to identify candidate cut pixels. A two-pass path finding
algorithm is then applied where the forward direction helps to
locate potential cuts and the backward direction serves to
remove the false cuts, i.e. those that go through the characters,
while retaining the true cuts. Experimental results show that
the proposed method outperforms an existing method on
multi-oriented English and Chinese video text lines. The
proposed method also helps to improve binarization results,
which lead to a better character recognition rate.

Keywords-Video character segmentation; Curved
segmentation path; Gradient vector flow; Minimum cost path
finding

I. INTRODUCTION
With the proliferation of videos on the Internet, there is

an increasing demand for search and retrieval. In addition to
image features, e.g. colors and shapes, semantic features, e.g.
text, play an important role in video retrieval. Both caption
text and scene text (which appears on billboards, road signs
and so on) can be used to improve the retrieval of relevant
videos, or even relevant frames.

According to [1], a video text detection and recognition
system consists of five steps: (1) Detection, (2) Localization,
(3) Tracking, (4) Extraction and enhancement, and (5)
Recognition. The first three steps focus on detecting and
localizing text lines in video frames. The text lines’ locations
are usually represented by their rectangular bounding boxes.
However, these boxes still contain both text and background
pixels so the fourth step aims to make text easier to
recognize, e.g. by binarization. The fifth and final step
typically uses an optical character recognition (OCR) engine
to produce the final output as a string of characters.

OCR engines work well for document images, most of
which contain monochrome text on a plain background.
However, it does not produce satisfactory results for video
images due to the poor resolution, low contrast and
unconstrained background of the text lines. Moreover, scene
text is affected by lighting conditions and perspective
distortions. Hence, in this paper, we use our text detection
method [2] to get multi-oriented text lines in a video frame
and focus on the fourth step, extraction and enhancement, to
improve the performance of OCR for video text.

In particular, we propose a method for video character
segmentation, i.e. splitting a detected text line into individual
character images. The motivation is two-fold. First, it is an
important step if a custom-built OCR with its own feature
extraction scheme, e.g. [3], is used instead of a commercial
OCR. Second, even if a traditional OCR engine is used, this
step can still help to improve the recognition rate by
performing enhancement methods, e.g. binarization, on
individual character images instead of on the whole text line.

Character segmentation is a well-known problem in
document analysis, especially for handling touching
handwritten characters. Casey and Lecolinet [4] provided a
comprehensive literature survey of character segmentation
methods for document images. There are three main
approaches mentioned in the paper: dissection, the
decomposition of a text line image into individual character
images, recognition-based, the use of recognition results to
provide feedback for segmentation, and holistic, the direct
recognition of words (without segmentation) through
matching features such as ascenders and descenders.

Many of the methods mentioned in the above paper were
designed solely for document images and thus rely on
connected component analysis. However, this is not suitable
for video images because text pixels cannot be reliably
extracted as complete connected components due to the low
contrast and complex background of the text lines.
Therefore, a number of methods have been proposed for
video characters and most of them belong to the first
approach. The second approach is not common because
video character recognition itself is a challenging problem,
while the third approach is limited to predefined lexicons.

A common video character segmentation method is
projection profile analysis [5]. Edge information (or other
kinds of energy) in each column was analyzed to distinguish
between columns that contain text pixels and gap columns,
based on the observation that the former had higher energy
compared to the latter. Heuristic rules were proposed to
further split and merge the segmented regions based on
assumptions about the characters’ widths and heights [6], [7].
Although these methods are simple and fast, it is difficult to
determine a good threshold for images of different contrast
(Fig. 1). In addition, because they work based on columns,
they can only produce vertical cuts.

To overcome this problem, a number of papers, inspired
by works on touching handwritten characters, modeled the
segmentation problem as a minimum cost path finding
problem. Kopf, Haenselmann and Effelsberg [8] used
Dijkstra’s algorithm to perform path finding from the top
row to the bottom row of the input image. A path’s cost was

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.207

1024

defined as the cumulative absolute difference in grayscale
intensities between consecutive pixels, based on the
assumption that the background region had little variation in
intensity. This method may not work well for images with
complex backgrounds. In a similar approach, Tse, Jones,
Curtis and Yfantis [9] applied path finding recursively until
the segmented regions met the stopping criteria, e.g. their
widths were below a threshold. However, this method
requires binarization to get connected components, which is
extremely difficult to do reliably, as aforementioned.

Different from the previous methods, Saidane and Garcia
[10] used a machine learning technique, convolutional neural
networks, for segmentation. The input was the three images
corresponding to three color channels of the text line image.
The output was a vector which classified whether each
column was a border between consecutive characters. This
method requires training data and thus may not generalize
well to different datasets. It also allows only vertical cuts.

In this paper, we propose a new method for video
character segmentation by formulating the problem as a path
finding problem. The cost function employs gradient vector
flow (GVF) to define the criteria of a good path based on the
gradient information. Our method has two advantages over
existing methods in the literature. First, it allows curved
segmentation paths, which are traditionally only required for
touching handwritten characters. However, they are also
important for video characters because touching characters
can occur due to the poor resolution, the low contrast, and
the variety of fonts of the text lines, including stylized text
used in commercials. Second, our method does not require
many thresholds for classifying gap columns (as in methods
based on projection profile analysis) or extracting complete
connected components from text line images (as in document
analysis methods and binarization methods).

Finally, it should be noted that in the literature, there is
another school of thought that leaves character segmentation
to OCR engines and instead focuses on extracting character
pixels more accurately, e.g. [11], [12], [13]. Hence, in the
experiment section, we show that our method can, in fact,
help to improve the binarization results.

II. PROPOSED APPROACH
We use our text detection method [2], which is capable of

detecting both horizontal and non-horizontal text, to extract
the text lines from a video frame. They then become the
input images of the proposed character segmentation
method, which consists of three steps: cut candidate
identification, minimum cost path finding and false positive
elimination. The first step employs GVF to identify pixels
that are potentially part of non-vertical cuts. In the second
step, we find multiple least cost paths from the top row to the
bottom row of the image. The third step helps to remove
false cuts that go through the middle of the characters.

A simple preprocessing step is also performed on the
detected text lines: they are rotated back to horizontal
orientation, if they are non-horizontal, and normalized to a
fixed height of 128 pixels because some lines are too small
to be readable at their original sizes, e.g. 10-pixel height.

A. Cut Candidate Identification
GVF [14] is a popular method that is often used together

with active contour [15] for non-rigid registration and motion
tracking. With the normal gradient, there is only information
at the edges, and not in homogenous regions. GVF helps to
overcome this problem by propagating the gradient
information, i.e. the magnitude and the direction, into
homogenous regions. As a result, there are enough forces to
attract the snake into concave regions. The propagation is
done by minimizing the following energy functional:

 Ԫ ൌ ௫ଶݑ൫ߤ ௬ଶݑ ௫ଶݒ ௬ଶ൯ݒ ݃|ଶ|݂| െ (1) ݕ݀ݔ݀ |ଶ݂

where ݃ሺݔ, ሻݕ ൌ ൫ݑሺݔ, ,ሻݕ ,ݔሺݒ ሻ൯ݕ is the GVF field and ݂ሺݔ, .ሻ is the edge map of the input image [14]ݕ
In this paper, we propose using GVF in a novel way for

character segmentation (instead of for registration or
tracking). A gap between two characters can be thought of as
a collection of points that lie in the middle of two edges, one
from the character on the left hand side and the other from
the character on the right hand side. Within a gap, there is
more than one segmentation path that can separate the two
characters. One way to define a good path is that it should
stay as far as possible from the two character edges to allow
room for errors if the edge information is not accurate or the
character contours are partly broken due to low contrast.

With this motivation, we use the GVF field to identify
candidate cut pixels. It is observed that for edges, there are
often two “arrows” (gradient directions) pointing towards
each other while for gaps, the arrows usually point away
from each other (Fig. 2). This implies that on the left hand
side of a gap, the pixels are closer to the character on the left
and thus attracted to that side, and similarly for the right
hand side. Because the gap pixel is equally far from both
characters, it satisfies the criterion mentioned above.
Therefore, pixel (x, y) is a candidate cut pixel if and only if:

 ቐ ,ݔሺݑ ሻݕ ൏ ݔሺݑ0 1, ሻݕ 0݈ܽ݊݃݁൫݃ሺݔ, ,ሻݕ ݃ሺݔ 1, ሻ൯ݕ ߠ (2)

where angle(.) returns the angle between two vectors. In
other words, the GVF vector at pixel (x, y) should point to
the left hand side, the GVF vector at pixel (x + 1, y) should
point to the right hand side and the angle between these two
vectors should be sufficiently large, e.g. 15 degrees.

Fig. 3 shows the candidate cut pixels of a text line with
complex background. GVF is able to detect pixels in the
gaps between consecutive characters. Although these pixels
do not form complete cuts yet, they play an important role in
the path finding process, which is described in the next
section, where the segmentation paths are encouraged to go

Figure 1. The results of projection profile analysis are sensitive to
threshold values. With a high threshold, true gaps are missed (left),
while with a low threshold, many false gaps are detected (right).

1025

through these pixels instead of other pixels in the same gap.

A side effect of (2) is that it also captures “medial”
pixels, i.e. those that are in the middle of the character
strokes (Fig. 3). However, it is still possible to distinguish
between candidate cut pixels and medial pixels. Since medial
pixels are part of a character, if a segmentation path wants to
go through these pixels, it has to make several background-
to-character and character-to-background transitions. This is
not the case for candidate cut pixels because the
segmentation path would only stay in the background.

In the next section, we explain how the cost function is
designed to both encourage paths going through candidate
cut pixels and discourage those going through medial pixels.

B. Minimum Cost Path Finding
Inspired by a method for segmenting merged characters

in document images [16], we formulate character
segmentation as a minimum cost path finding problem where
from the top row, it costs less to go through a gap and reach
the bottom row than cutting through a character.

The input image can be considered as a graph where the
vertices are the pixels, and pixel (x, y) is connected to
neighboring pixels in the left-down, down and right-down
directions, i.e. pixels (x – 1, y + 1), (x, y + 1) and (x + 1, y +
1). The minimum cost paths are found by dynamic
programming as follows.

Let I(x, y) be the grayscale input image, p0 be a starting
pixel on the top row, c(p1, p2) be the cost of moving from
pixel p1 to pixel p2, and d(p) be the cumulative cost of the
minimum cost path from pixel p0 to pixel p.

Initialization:

 ݀ሺሻ ൌ ൜ 0, ݂݅ ൌ ,∞ (3) ݁ݏ݅ݓݎ݄݁ݐ

Update rule:

 ݀ሺሻ ൌ ݉݅݊ ൞ ݀൫௧ି௨൯ ܿሺ௧ି௨, ௨൯ሻ݀൫ ܿሺ௨, ௧ି௨൯ሻ݀൫ ܿሺ௧ି௨, ሻ (4)

where pleft-up = (p.x − 1, p.y − 1), pup = (p.x, p.y − 1) and pright-

up = (p.x + 1, p.y − 1). The cost function is defined as:

 ܿሺଵ, ଶሻ ൌ ቐ 0 ଵሻሺܫଶሻሺሺ݁ݐܽ݀݅݀݊ܽܿ ݂݅ െ ଶሻሻଶሺܫ .ଵ ݂݅ ݔ ൌ .ଶ ݇ݔ ൈ ሺܫሺଵሻ െ ଶሻሻଶሺܫ ݁ݏ݅ݓݎ݄݁ݐ (5)

where candidate(p) returns true if p is a candidate cut pixel
and k is the diagonal move penalty (to be explained later).

As previously mentioned, the cost function is designed to
encourage paths that go through candidate cut pixels. It is
thus set to be zero at these pixels. For other pixels, the cost

function is set to the squared difference between two gray
intensities because we assume that for text to be readable,
there should be some contrast between the characters and the
background. (We use the squared difference to penalize large
differences more, instead of penalizing the differences
linearly.) A large difference may indicate transitions between
the background and the characters, i.e. cutting through the
characters. Therefore, paths that go through medial pixels are
discouraged by this cost function.

Curved segmentation paths are naturally allowed.
However, in many cases, vertical paths are sufficient so k is
set to √2 to avoid paths with excessive curvature.

An advantage of the proposed cost function is that it
works directly on grayscale images and does not require
binarization like many document analysis methods. In
addition, by using the squared difference, it is able to handle
text of different polarities, i.e. both bright and dark text.

Note that the above algorithm finds the best path for only
one starting point on the top row. To segment all the
characters, we run it multiple times with different starting
points. Ideally, we only need to put a starting point every w
pixels where w is the estimated character width (based on the
height of the input image). However, because the characters
have variable widths, e.g. ‘i’ versus ‘m’, and furthermore, the
gaps between the words may not be a multiple of w, more
frequent starting points are required. In our implementation,
a starting point is placed every w / 4 pixels.

C. False Positive Elimination
In the previous section, the cost function is carefully

designed to discourage segmentation paths that cut through
the characters. However, these false cuts may still occur for
various reasons, e.g. low contrast which leads to a small
difference in grayscale intensities of two consecutive pixels
on the path. In this step, we aim to remove these false cuts.

It is interesting to observe that if there are more starting
points than required in a gap, the minimum cost paths
usually converge to the same end point (Fig. 4a). This
suggests that end points are more reliable than the starting
points, especially because the latter are placed according to a
heuristic rule based on the estimated character width.

In order to verify whether a segmentation path is a true
cut or a false cut (going through a character), we perform
backward path finding from the end points to the top row
(similar to forward path finding, except that the directions of
the edges are reversed). For true cuts, it is likely that the
forward path and the backward path are close to each other
because they both aim to pass through the candidate cut
pixels in the background. However, for false cuts, instead of
going the same route as the forward path, the backward path
may switch to either side of the character because the cost
would be lower since there are no background-to-character

 (a) Input (b) Candidate cut pixels

Figure 3. Candidate cut pixels of a sample image. In (b), the image is
blurred to make the (white) cut pixels more visible.

 (a) Edge (b) Gap between two edges

Figure 2. GVF fields around an edge and a gap.

1026

and character-to-background transitions (Fig. 4b).

The proposed method can be considered as a two-pass
path finding algorithm where the forward direction locates
potential cuts and the backward direction verifies them.

III. EXPERIMENTAL RESULTS
Since there is no standard dataset for video text, we have

used our text detection method [2] to extract a variety of text
lines from TRECVID videos [18], including news
programmes, commercials and movie clips. The text lines
are divided into 4 datasets: English horizontal (200 images),
English non-horizontal (100 images), Chinese horizontal
(200 images) and Chinese non-horizontal (100 images).

For comparison purpose, we have implemented an
existing method [8], denoted as Kopf’s method. As
mentioned in the introduction section, this method also
performs minimum cost path finding. It uses a similar graph
structure as our method but with a different cost function. It
makes a simple modification from document analysis
methods by using the absolute difference in grayscale
intensities between consecutive pixels on a path. On the
other hand, the proposed method defines the cost function
based on GVF and also employs path verification.

A. Sample Segmentation Results
Fig. 5 shows sample segmentation results of the existing

method and the proposed method. The image on the left hand
side contains English characters of very low contrast. The
existing method misses 2 cuts (between ‘U’ and ‘I’, and
between ‘I’ and ‘T’) and gives 4 false cuts while the
proposed method identifies all the cuts correctly, without any
false cuts. In the image on the right hand side, the Chinese
characters are also of low contrast. The proposed method
detects all the cuts correctly while the existing method
misses one cut between the second and the third characters.
Similar to the previous image, the existing method produces
many more false cuts than the proposed method (6 versus 2).
Fig. 6 shows more results of the proposed method.

B. Segmentation Accuracy
We use recall (R), precision (P) and F-measure (F) as the

performance measures, and make the following definitions:
• Actual Cuts (AC): Ground truth cuts in the

images, which are counted manually.
• True Cuts (TC): Detected cuts that only pass

through the background region.
• False Cuts (FC): Detected cuts that go through the

characters.
The performance measures are calculated as follows:

• R = TC / AC
• P = TC / (TC + FC)
• F = 2 × P × R / (P + R)

Table I shows the performance of Kopf’s method and our

method on English horizontal and non-horizontal text lines.
Although both methods have similar recall, the proposed
method has significantly higher precision and F-measure.
The existing method produces many false cuts for images
with complex background. On the other hand, by using GVF
and backward path verification, the proposed method is able
to stay as far as possible from the character edges (to allow
room for errors) and remove the majority of the false cuts.

Similarly, our method achieves higher precision and F-
measure for Chinese horizontal and non-horizontal text lines,
although Kopf’s method has a slightly higher recall for
Chinese horizontal text lines (Table II). The recall of both
methods increases, compared to English text. The English
datasets are more challenging than the Chinese datasets
because they have more variety of text lines, including
stylized text used in commercials. Another reason is that
Chinese characters have more regular widths than English
characters and thus it is easier to detect the gaps. In terms of
precision, both methods degrade in performance. A Chinese
character typically consists of multiple sub-components and
furthermore, there are gaps between these components.
Therefore, both methods produce more false cuts.

Both methods also have a lower precision for non-
horizontal text, compared to horizontal text. Multi-oriented
text is often stylized text or scene text. In both cases, the
background is complex; and the contrast is low in the second
case. Hence, both methods are more likely to make mistakes.
The degradation in the proposed method’s performance,
however, is less than that of the existing method.

C. Recognition Accuracy
To show that character segmentation helps to improve

the recognition rate, we use a recent binarization method
[17], which outperforms traditional methods such as Otsu’s
method and Niblack’s method on the dataset of the
Document Image Binarization Contest 2009, at two different
levels: the text line level and the character level (i.e. the
individual characters segmented by the proposed method).
The performance measure is the character recognition rate
(CRR) using Tesseract [19], Google’s OCR engine. (For this

(b) Result for a line in (a)

(c) Result for logo text (a) Video frame with scene text

Figure 6. Results of the proposed method for non-horizontal text (b)
and logo text with touching characters (c). In (c), the gap between ‘R’
and ‘I’ is missed because the touching part is quite thick.

(a) Segmentation results by Kopf’s method

(b) Segmentation results by our method

Figure 5. Results of the existing method and the proposed method.

 (a) Forward path finding (b) Backward path verification

Figure 4. Two-pass path finding algorithm. In (a), different starting
points converge to the same end points. In (b), the false cuts going ‘F’
have been removed while the true cuts are retained.

1027

TABLE I. SEGMENTATION RESULTS ON ENGLISH TEXT

Method English Horizontal English Non-horizontal
R P F R P F

Kopf’s method 0.89 0.76 0.82 0.88 0.62 0.73
Our method 0.89 0.91 0.90 0.91 0.85 0.88

TABLE II. SEGMENTATION RESULTS ON CHINESE TEXT

Method Chinese Horizontal Chinese Non-horizontal
R P F R P F

Kopf’s method 0.96 0.60 0.74 0.95 0.57 0.71
Our method 0.95 0.81 0.87 0.96 0.74 0.84

experiment, we have considered only English text lines.)

To ensure a fair comparison, for the character level, we
put the binarized results together into a line so that in both
cases, the OCR engine can utilize its language model to
better recognize the characters. Fig. 7 shows the binarization
results of a challenging image with a complex and uneven
background. Without segmentation, the last four characters
are not binarized well because the binarization method fails
to choose the appropriate parameters for both characters with
clean background and characters with complex background
(in the same text line). Only two characters are recognized
correctly. On the other hand, with segmentation, the
binarization result is significantly improved and six
characters are recognized correctly.

Table III shows that it is better to perform binarization at
the character level than at the text line level. Part-by-part
binarization helps to reduce the problem of complex and
uneven background by using local information.

IV. CONCLUSION AND FUTURE WORK
We have proposed a new method for video character

segmentation, which is able to produce curved segmentation
paths and works directly on grayscale images, i.e. no
binarization is required. GVF is used in a novel way to
identify candidate cut pixels. A two-pass path finding
process is then employed where the forward direction helps
to locate potential cuts and the backward direction serves to
verify the true cuts and remove the false cuts, i.e. those that
go through the middle of the characters. Experimental results
show that the proposed method performs well for both
English and Chinese text lines of horizontal and non-
horizontal orientation. It also helps to increase the character
recognition rate by improving binarization results.

In the future, we plan to do a complete work, from text
detection to enhancement and recognition. For example, after
segmentation, it may be necessary to reconstruct the shapes
of the characters, if there are broken edges, before sending
them for recognition. The language model can also be
implemented outside of the OCR engine, e.g. as in [13].

TABLE III. RECOGNITION RATES WITH AND WITHOUT SEGMENTATION

Method CRR
Binarization (line level) 59.1%

Segmentation + binarization (character level) 66.6%

ACKNOWLEDGMENT
This research is supported in part by A*STAR grant

R252-000-402-305.

REFERENCES
[1] K. Jung, K.I. Kim, and A.K. Jain, “Text information extraction in

images and video: a survey”, Pattern Recognition, vol. 37, no. 5,
2004, pp. 977–997.

[2] P. Shivakumara, T. Q. Phan, and C. L. Tan, "A Laplacian approach to
multi-oriented text detection in video", IEEE Transactions on PAMI,
vol. 33, no. 2, 2011, pp. 412–419.

[3] M. Mori, M. Sawaki, and N. Hagita, "Video text recognition using
feature compensation as category-dependent feature extraction", In
Proc. ICDAR, 2003, pp. 645–649.

[4] R. G. Casey and E. Lecolinet, "A survey of methods and strategies in
character segmentation", IEEE Transactions on PAMI, vol. 18, no. 7,
1996, pp. 690–706.

[5] R. Lienhart and A. Wernicke, "localizing and segmenting text in
images and videos", IEEE Transactions on Circuits and Systems for
Video Technology, vol. 12, no. 4, 2002, pp. 256–268.

[6] X. Huang, H. Ma, and H. Zhang, "A new video text extraction
approach", In Proc. ICME, 2009, pp. 650–653.

[7] G. Miao, G. Zhu, S. Jiang, Q. Huang, C. Xu, and W. Gao, "A real-
time score detection and recognition approach for broadcast
basketball video", In Proc. ICME, 2007, pp. 1691–1694.

[8] S. Kopf, T. Haenselmann, and W. Effelsberg, “Robust character
recognition in low-resolution images and videos”, Technical report,
University of Mannheim, 2005.

[9] J. Tse, C. Jones, D. Curtis, and E. Yfantis, "An OCR-independent
character segmentation using shortest-path in grayscale document
images", In Proc. International Conference on Machine Learning and
Applications, 2007, pp. 142–147.

[10] Z. Saidane and C. Garcia, "An automatic method for video character
segmentation", In Proc. International Conference on Image Analysis
and Recognition, 2008, pp. 557–566.

[11] W. Kim and C. Kim, "A new approach for overlay text detection and
extraction from complex video scene", IEEE Transactions on Image
Processing, vol. 18, no. 2, 2009, pp. 401–411.

[12] Z. Saidane and C. Garcia, "Robust binarization for video text
recognition", In Proc. ICDAR, 2007, pp. 874–879.

[13] D. Chen and J. Odobez, "Video text recognition using sequential
Monte Carlo and error voting methods”, Pattern Recognition Letters,
vol. 26, no. 9, 2005, pp. 1386–1403.

[14] C. Xu and J. L. Prince, "Snakes, shapes, and Gradient Vector Flow",
IEEE Transactions on Image Processing, vol. 7, no. 3, 1998, pp. 359–
369.

[15] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: active contour
models", Int. Journal of Computer Vision, vol. 1, no. 4, 1987, pp.
321–331.

[16] J. Wang and J. Jean, "Segmentation of merged characters by neural
networks and shortest path", In Proc. ACM/SIGAPP Symposium on
Applied Computing, 1993, pp. 762–769.

[17] B. Su, S. Lu, and C. L. Tan, "Binarization of historical document
images using the local maximum and minimum", In Proc. Int.
Workshop on Document Analysis Systems, 2010, pp. 159–166.

[18] TRECVID. http://trecvid.nist.gov/
[19] Tesseract. http://code.google.com/p/tesseract-ocr/

Figure 7. Binarization results without segmentation (b) and with
segmentation (c), together with the recognition results. The proposed
method helps to improve the binarization and recognition results in (c).

 (a) Input (b) Line level (c) Character level
 ‘TO’ ‘TONIGH §’

1028

