
Perceptron Learning of Modified Quadratic Discriminant Function

Tong-Hua Su, Cheng-Lin Liu, Xu-Yao Zhang
National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P.R. China
Email: {thsu,liucl,xyz}@nlpr.ia.ac.cn

Abstract—Modified quadratic discriminant function
(MQDF) is the state-of-the-art classifier in handwritten
character recognition. Discriminative learning of MQDF can
further improve its performance. Recent advances justify the
efficacy of minimum classification error criteria in learning
MQDF (MCE-MQDF). We provide an alternative choice to
MCE-MQDF based on the Perceptron learning (PL-MQDF).
For better generalization performance, we propose a new
dynamic margin regularization. To relieve the heavy burden
in training process, active set technique is employed, which
can save most of the computation with negligible loss in
accuracy. In experiments on handwritten digit datasets and
a large-scale Chinese handwritten character database, the
proposed PL-MQDF was demonstrated superior in both error
reduction and training speedup.

Keywords-Chinese handwritten character recognition,
MQDF, Perceptron, dynamic margin, active set

I. INTRODUCTION

Modified quadratic discriminant function (MQDF), origi-
nally proposed by Kimura [1], is a compact Gaussian clas-
sifier with the-state-of-the-art performance in handwritten
character recognition. MQDF re-parameterizes the covari-
ance matrix into eigenvalues and eigenvectors and truncates
the small eigenvalues to denoise the unstable estimation.
MQDF often generalizes better than regular quadratic dis-
criminant function (QDF) and it runs faster and requires
lower storage by product. Traditionally, the parameters of
MQDF are derived from maximum likelihood estimator
(MLE) which is a generative method, thus the learning pro-
cess is not directly related to its classification performance.

Previously, minimum classification error (MCE) criterion
is tried on MQDF [2], [3], [4]. The MCE criterion is well
known in speech recognition [5] and it is used to adjust
parameters of MQDF (MCE-MQDF). Liu et al [2] conduct
thorough investigation on MCE-MQDF and the experiments
on digit recognition justify its superior. Due to the intensive
computation burden, MCE-MQDF is applied on Chinese
handwritten character recognition where just the mean vec-
tors and eigenvalues of MQDF are adjusted [3]. Recently,
MCE-MQDF with a revised loss function is applied on
Chinese handwritten character recognition with the help of
parallelization programming and they only update the mean
vectors [4]. Despite rapid advances in computer speed, heavy
training burden is still one of the biggest problems for such
discriminative learning methods.

To overcome the shortcomings of MCE-MQDF, we pro-
pose a new method for discriminative learning of MQDF
in the context of large-category learning task. Our model is
based on one of the oldest Perceptron algorithm [6], that
is, we pursue for Perceptron learning of modified quadratic
discriminant function (PL-MQDF). However, the direct use
of Perceptron suffers from overfitting and slow training. Two
endeavors are done to make Perceptron generalize better and
scale better. First of all, we regularize the objective function
through a dynamic margin constraint to achieve a better
generalization performance. On the other hand, active set
technique is equipped with Perceptron; most computation
costs are saved meanwhile without much loss in accuracy.

It is worthy to further highlight our model from machine
learning perspective. PL-MQDF is a quadratic Perceptron,
which is different from the traditional nonlinear extension of
linear models. Mostly, linear models are extended into their
nonlinear counterpart via kernel trick or explicit mapping.
When the dataset is large, kernel methods will produce many
support vectors, which is time-consuming in evaluation.
Explicit quadratic mapping requires a large memory to save
the mapped features, and it can only learn a regular QDF.
The MQDF cannot be equipped with these two tricks for
its complex nonlinear structure. Therefore, PL-MQDF is
irreplaceable by those two nonlinear extensions. What’s
more, PL-MQDF scales well to large-scale applications.

The paper is organized as follows. We describe back-
ground materials relating to MQDF and Perceptron algo-
rithm in Sect. II. We then present the PL-MQDF in Sect. III.
Margin regularization and active set technique are detailed
in turn. The next section clarifies the relationship with the
learning vector quantization (LVQ) family. Sect. V provides
empirical studies on both handwritten digit databases and
a Chinese handwritten character database. Concluding re-
marks are given in Sect. VI.

II. BACKGROUND

A. MQDF

In Bayesian classification, we get the quadratic discrimi-
nant function (QDF) under the assumptions of multivariate
Gaussian density and equal a priori probabilities:

𝑑2𝑄(x, 𝜔𝑖) =(x− 𝜇𝑖)
𝑇Σ−1

𝑖 (x− 𝜇𝑖) + ln ∣Σ𝑖∣ , (1)
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where 𝜇𝑖 and Σ𝑖 are the mean vector and covariance matrix
of class 𝜔𝑖, respectively. The modified QDF (MQDF) further
replaces the minor eigenvalues with a larger constant [1]:

𝑑2(x, 𝜔𝑖) =

𝑘∑
𝑗=1

1

𝜆𝑖𝑗

[
𝜙𝑇
𝑖𝑗(x− 𝜇𝑖)

]2
+

𝑘∑
𝑗=1

log 𝜆𝑖𝑗

+
1

𝛿𝑖
𝑟𝑖(x) + (𝑑− 𝑘) log 𝛿𝑖

, (2)

where 𝜆𝑖𝑗 is the 𝑗-th largest eigenvalue of Σ𝑖, 𝜙𝑖𝑗 is
the corresponding eigenvector, 𝛿𝑖 is the truncated minor
eigenvalues, 𝑘 denotes the number of principal axes and
𝑟𝑖(x) is the residual of subspace projection:

𝑟𝑖(x) = ∥x− 𝜇𝑖∥2 −
𝑘∑

𝑗=1

[
𝜙𝑇
𝑖𝑗(x− 𝜇𝑖)

]2
. (3)

MQDF falls into generative model and its parameter set
Θ𝑖 = {𝜆𝑖𝑗 , 𝛿𝑖, 𝜇𝑖, 𝜙𝑖𝑗} is commonly derived from the
estimation of maximum likelihood.

B. Perceptron Learning

Hybrid generative and discriminative models will give
higher classification accuracy, as well as the resistance to
outliers [2]. Perceptron is used for discriminative learning
of MQDF. Firstly, the misclassification measure on a pattern
from class 𝜔𝑐 is defined, following Juang et al. [5]:

ℎ(x,Θ𝑐,Θ𝑟) = 𝑑2(x, 𝜔𝑐)− 𝑑2(x, 𝜔𝑟) , (4)

where 𝑑2(x, 𝜔𝑟) is the score of the closest rival class:
𝑑2(x, 𝜔𝑟) = min𝑖∈ℳ 𝑑2(x, 𝜔𝑖) with ℳ is the candidate set.
Using Perceptron learning, the goal is to minimize:

ℒ𝑝 =
∑
x𝑛∈ℰ

𝑑2(x𝑛, 𝜔𝑐)− 𝑑2(x𝑛, 𝜔𝑟) , (5)

where ℰ = {x∣ℎ(x,Θ𝑐,Θ𝑟) > 0}.
On instance x𝑛, stochastic gradient descent (SGD) up-

dates as:

Θ𝑖 ←Θ𝑖 − 𝜂
∂{𝑑2(x𝑛, 𝜔𝑐)− 𝑑2(x𝑛, 𝜔𝑟)}

∂Θ𝑖

, (6)

where 𝜂 is the learning step.

III. LEARNING MODEL

The direct use of Perceptron suffers from overfitting and
slow training. This section provides the essential building
blocks for a effective and efficient PL-MQDF.

A. Dynamic Margin Regularization

Margin constraint is imposed to ensure a good general-
ization. If the difference between the squared distance from
𝑥 to 𝜔𝑟 and that from 𝑥 to 𝜔𝑐 does not exceed a margin, a
margin error is triggered. That is, not only the misclassified
samples, but also the correctly classified ones that near the
decision boundary are used to update the parameters.

Analogous to [7], the objective function with a constant
margin strength can be formulated as:

ℒ𝑝 =
∑
x∈ℰ

𝑑2(x, 𝜔𝑐)− 𝑑2(x, 𝜔𝑟) + 𝜌 , (7)

where 𝜌 is the margin strength and ℰ = {x∣𝑑2(x, 𝜔𝑐) −
𝑑2(x, 𝜔𝑟) > −𝜌}.

Considering the large divergence of different classes, fixed
margin may loss its precision. On every instance x, we seek
a local margin proportional to the squared distance from
x to 𝜔𝑐. Then we would like to let all instances satisfy:
𝑑2(x, 𝜔𝑟) − 𝑑2(x, 𝜔𝑐) > 𝜌𝑑2(x, 𝜔𝑐). Intuitively, x should
be not only correctly classified but also kept away from the
decision boundary. We renew the misclassification measure:

ℎ′(x,Θ𝑐,Θ𝑟) = (1 + 𝜌)𝑑2(x, 𝜔𝑐)− 𝑑2(x, 𝜔𝑟) (8)

= 𝜌𝑑2(x, 𝜔𝑐) + 𝑑2(x, 𝜔𝑐)− 𝑑2(x, 𝜔𝑟) (9)

We first consider Eq. 8. The first term penalizes large
distances from x to its true class. The gradient of this
term generates a pulling force that attracts the true class.
The second term penalizes small distances from x to its
most confusable class. The gradient of this term generates
a pushing force that repels the rival class. Moreover, the
strength of pulling is larger than that of pushing and is
determined by the intensity of 𝜌. We then consider Eq. 9.
The role of the first term is the same as the term in Eq. 8.
The remaining terms penalize the classification error. Their
gradient generates a pushing force to make the difference
of those squared distances larger. As a result, the empirical
errors may be greatly decreased under these two terms.

Plugging in the dynamic margin, the objection function
becomes:

ℒ′𝑝 =
∑
x∈ℰ

(1 + 𝜌)𝑑2(x, 𝜔𝑐)− 𝑑2(x, 𝜔𝑟) , (10)

where ℰ = {x∣𝑑2(x, 𝜔𝑐) − 𝑑2(x, 𝜔𝑟) > −𝜌𝑑2(x, 𝜔𝑐)}. The
elements in ℰ incur a classification error or violate the
margin error. Only in Eq. 10 can the margin constraint
be viewed as a regularization to MLE. If 𝜌 is 0, the
model degenerates as a Perceptron without margin. On the
contrary, we attain a maximum likelihood estimation when
𝜌 approaching to ∞.

At the 𝑡-th iteration, Θ𝑐 and Θ𝑟 are updated on the
erroneous instance x𝑛 as:{

Θ𝑐(𝑡+ 1) = Θ𝑐(𝑡)− (1 + 𝜌)𝜂𝑡 ▽ 𝑑2(x𝑛, 𝜔𝑐)∣Θ𝑐(𝑡)

Θ𝑟(𝑡+ 1) = Θ𝑟(𝑡) + 𝜂𝑡 ▽ 𝑑2(x𝑛, 𝜔𝑟)∣Θ𝑟(𝑡)

.

(11)
We should highlight that Eq. 7 does not affect the learning
rate in Eq. 6, while Eq. 10 changes the learning rate of
Θ𝑐 from 𝜂𝑡 to (1 + 𝜌)𝜂𝑡. If we specify the initial learning
rate and the last one before halting as 1/𝑡0 and 1/(𝑚.𝑡0)
respectively, then the learning rate at 𝑡-th step is set as:

𝜂𝑡 =
𝑇.𝑆

𝑡0(𝑇.𝑆 + (𝑚− 1).(𝑡− 1))
, (12)
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Figure 1. The switching order of active sets.

where 𝑇 is the total number of training rounds, 𝑆 is the
sample size.

There are two distinctions than MCE learning. Firstly, the
loss function is different. Perceptron employs a hinge-style
loss; MCE uses a sigmoid function to approximate the 0-1
loss. Secondly, they vary in the update rule. Perceptron just
considers the information from misclassified instances while
MCE absorbs information from all instances. Although their
distinctions, many implementation tricks of MCE can be
seamlessly adopted to Perceptron such as parameter trans-
formation, partial derivation of squared distance (Cf. [2] for
more details).

B. Active Set Technique

We employ active set technique to speed up the training
process of Perceptron algorithm. If a instance invokes a clas-
sification error or margin error, we say it “active”. During
the cycling once through the available training instances, all
active instances form a active set for the subsequent rounds.
Such procedure can be nested and active sets of different
levels can be generated.

For demonstration purpose, we present two nested active
sets similar to [8]. The first active set named 𝐴𝑆1 is
composed of the instances from the full training dataset
violating margin constraints. The second one named 𝐴𝑆2

is built from the active instances in 𝐴𝑆1. 𝐴𝑆2 is presented
repetitively to the algorithm for 𝑁2 passes. Then 𝐴𝑆1 comes
back which is cycled once again to the algorithm. Each time
𝐴𝑆1 is under consideration, 𝐴𝑆2 is restarted. After 𝑁1 times
invoking of 𝐴𝑆1, we will resume to the full training dataset
and the procedure starts all over again. The switching of
above three sets is depicted in Fig. 1. The full training dataset
is denoted as 𝐴𝑆0.

We give an concrete example to show that the active
set technique will not excessively drop the samples that
should be used for learning in our setting. We select the
Chinese handwritten character database (Cf. Sect. V-B) as
full training dataset and set {𝑁1 = 10, 𝑁2 = 0}. During the
first cycling through 𝐴𝑆0, we generate a 𝐴𝑆1. On each of the
following 10 rounds, we first record all samples with margin
error from 𝐴𝑆0 and the percentage of samples that can be
found in 𝐴𝑆1 is called hit percentage. When the allowed
rounds are exhausted, we generate a new 𝐴𝑆1 and restart the
collection of hit percentage. After cycling 20 times, we stop
it. The hit percentages of the process are shown in Fig. 2.
We can see a high hit percentage and a large reduction in
the size of active set.

Figure 2. The hit percentage versus the size of active set.

IV. INTERPRETATION

Our model is applicable to both MQDF and QDF. We
show that the learning model of this paper is a general
framework covering LVQ family. If we impose structural
constraints on Σ𝑖, we obtain LVQ and its variants such as
LVQ with class-independent weighting and LVQ with class-
dependent weighting (Cf. [9]).

Case 1: Assuming ∀𝑖,Σ𝑖 = I (I is the identity matrix),
Eq. 4 becomes:

ℎ(x,Θ𝑐,Θ𝑟) =∣∣x− 𝜇𝑐∣∣22 − ∣∣x− 𝜇𝑟∣∣22
=− 2(∣∣x− 𝜇𝑐∣∣2 + ∣∣x− 𝜇𝑟∣∣2)
∙ 1

2
(∣∣x− 𝜇𝑟∣∣2 − ∣∣x− 𝜇𝑐∣∣2)︸ ︷︷ ︸

hypothesis margin

. (13)

Using SGD w.r.t. 𝜇𝑖, we get the LVQ classifier. The regu-
larization of dynamic margin in Eq. 10 is similar to [9] and
helps to enlarge the hypothesis margin. As shown in [10],
maximizing hypothesis margin provides a upper bound of
generalization error for LVQ.

Case 2: Assuming ∀𝑖,Σ𝑖 = diag{𝑤1, ..., 𝑤𝑑}, Eq. 4
becomes:

ℎ(x,Θ𝑐,Θ𝑟) =

𝑑∑
𝑝=1

𝑤𝑝(𝑥𝑝 − 𝜇𝑝
𝑐)

2 −
𝑑∑

𝑝=1

𝑤𝑝(𝑥𝑝 − 𝜇𝑝
𝑟)

2

(14)

and we get the LVQ with class-independent weighting. Even
we can assume Σ𝑖 = Σ and fix it. We will run LVQ in a
linear transformed space and all theoretical reasoning are
still held.

Case 3: Assuming Σ𝑖 = diag{𝑤1
𝑖 , ..., 𝑤

𝑑
𝑖 } and omitting

logarithmic terms, Eq. 4 becomes:

ℎ(x,Θ𝑐,Θ𝑟) =
𝑑∑

𝑝=1

𝑤𝑝
𝑐 (𝑥

𝑝 − 𝜇𝑝
𝑐)

2 −
𝑑∑

𝑝=1

𝑤𝑝
𝑟 (𝑥

𝑝 − 𝜇𝑝
𝑟)

2

(15)

and we get the LVQ with class-dependent weighting. If we
further relax the structural constraints to just require Σ𝑖 ર 0,
we arrive at the learning model in this paper.
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V. EXPERIMENTS

Our investigation includes the error reduction and training
time of PL-MQDF. Evaluation is conducted on both small-
category learning task and large-category learning task. All
the experiments are run on a personal computer with a 3.0
GHZ CPU and a 2.0 GB physical memory. We first report
results on MNIST and USPS; we then present results on
Chinese handwritten character database.

A. On Digit Databases

As for MNIST database, the original 20 × 20 fine gray-
scale images are used to extract features [11]. Three kinds of
features are evaluated separately: img, pca80, e-grg (Cf. [11]
for more details). img is derived from arranging the image
pixel into a 400D feature vector. pca80 is processed by
principal component analysis on img (from 400D to 80D).
e-grg is 8-direction gradient features (200D). Likely, img
and e-grg are extracted and evaluated on USPS database.

The error rates and training time of Perceptron learning
(PL-MQDF) are given in Table. I and II with 𝑘 = 30. We
try active set technique in two different ways. For one trial
(PL-2AS), we construct two active sets exactly following
Sect. III-B and we set {𝑁1 = 1, 𝑁2 = 3}. For the other
(PL-1AS), we just generate one active set by simple using
{𝑁1 = 10, 𝑁2 = 0}. We also take efforts to train the MQDF
using MCE criteria as in [2]. A speedup trick is employed
for MCE-MQDF. We first compute the distance differences
as in Eq. 4 for all training samples using the initial MQDF
parameters and their average are taken as a threshold. During
MCE training, if the squared distance from x to 𝜔𝑟 is
bigger than that from x to 𝜔𝑐 by above threshold, SGD
step is bypassed. For a close comparison, we illustrate the
error rates on each class in Fig. 3. PL-MQDF outperforms
MCE-MQDF on both MNIST and USPS and there is no
severe loss in accuracy by using active set technique. In
terms of training time, both PL-1AS and PL-2AS bring great
reduction. Consistently, PL-1AS works well with preferable
performance.

Table I
ERROR RATES (%) AND TRAINING TIME (S) ON FINE IMAGE FEATURES

OF MNIST DATABASE.

classifier
img (400D) pca80 (80D) e-grg (200D)

Err CPU Err CPU Err CPU
MQDF 4.17 – 4.07 – 0.94 –

PL 1.55 238.98 1.52 84.94 0.52 129.84
PL-2AS 1.52 136.92 1.58 25.66 0.54 44.09
PL-1AS 1.51 122.55 1.49 22.70 0.53 30.61

MCE 1.92 196.28 1.80 79.75 0.53 119.91

1) The Effect of Sample Size: We select MNIST as a
subject. We initially just draw 2000 samples from training
set, then increase the training volumes and evaluate the
performance on test set. The results are given in Fig. 4.
It shows that models using discriminative learning require
more training samples for a robust learning.

Table II
ERROR RATES (%) AND TRAINING TIME (S) ON USPS DATABASE.

classifier
img (256D) e-grg (128D)
Err CPU Err CPU

MQDF 5.03 – 2.84 –
PL 3.94 21.63 2.19 14.80

PL-2AS 3.84 13.39 2.19 5.00
PL-1AS 3.94 12.00 2.24 3.55

MCE 4.09 15.69 2.49 22.39

Figure 4. Effect of training volumes for PL-MQDF (on e-grg of MNIST).

B. On Chinese Character Database

Due to the heavy burden in computation consumption,
discriminative learning algorithm is seldom attempted on
large-category tasks. We will show that active set technique
will speed up PL-MQDF greatly and render its usability on
regular personal computers.

CASIA-HWDB1.0 and CASIA-HWDB1.1 are used to
verify the efficacy of PL-MQDF. There are 3,755 classes
(GB1 character set) and each class has about 570 training
instances. We have 2,144,749 training samples and 533,675
test samples. As recommended in [12], pseudo 2D LDI
normalization is first executed and then NCGF features are
extracted on gray-scale samples. Also LDA is employed to
reduce the feature dimensionality from 512 to 160. In both
experiments, we set 𝑘 = 50.

We employ a two-stage classification process. In terms of
testing, an LVQ classifier first ranks all classes and provides
100 candidate classes of leading rankings. Then quadratic
models are incurred to re-rank the candidates and output
the label of the first place. As for training process, training
instances are cycled through repeatedly, and MQDF models
are adjusted as needed. On each instance, LVQ classifier
provides a candidate class setℳ (∣ℳ∣ = 10 or ∣ℳ∣ = 100).
If the true label of the instance is not included in ℳ, the
SGD is bypassed. Otherwise, we only invoke SGD to update
parameters each time violation of the margin constraint is
found. We set 𝜌 = 0.05 when dynamic margin is used and
we cycle 20 epochs through the training data (or active set).

The results are provided in Table III. The MCE-MQDF is
speeded up as mentioned in Sect. V-A. We just summarize
three general trends as follows. Firstly, a small candidate
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(a) img of MNIST (b) pca80 of MNIST (c) e-grg of MNIST (d) img of USPS (e) e-grg of USPS

Figure 3. The error rates per class of different methods on MNIST and USPS.

Table III
ERROR RATES (%) AND TRAINING TIME (HOUR) ON CASIA-HWDB1.0

AND CASIA-HWDB1.1 DATABASE.

classifier (𝜌)
∣ℳ∣=10 ∣ℳ∣=100

Err CPU Err CPU
MQDF 7.95 – 7.95 –
PL(0) 7.93 15.89 7.91 29.75

PL(0.05) 7.28 16.26 7.24 30.05
PL-1AS(0.05) 7.29 6.74 7.25 13.01

MCE 7.30 16.27 7.26 30.33

set is enough for discriminative learning. There is at most
0.04% extra error reduction from 100 candidate classes than
10, however, the time consumption is nearly doubled.

Secondly, regularization via margin is indispensable to
PL-MQDF. It is easily stuck in overfitting solution without
margin regularization and 8.20% relative error reduction is
yielded when 𝜌 = 0.05. We plot the training process of
PL-MQDF in Fig. 5(a).

Thirdly, PL-MQDF is comparative to MCE-MQDF. In
particular, our model requires lower computation cost when
equipped with active set technique. The active set method
accelerates PL-MQDF greatly and the loss of accuracy is
negligible. The ordered gains and losses w.r.t. all classes in
accuracy are illustrated in Fig. 5(b). In all, the PL-MQDF
achieves 8.30% error reduction than MQDF with acceptable
training cost.

(a) (b)

Figure 5. Evaluation of PL-MQDF: (a) the effect of candidate size and
margin regularization; (b) gains and losses against MQDF.

VI. CONCLUSION

We present a Perceptron based learning model for MQDF
named PL-MQDF. The objective function of PL-MQDF can-

not be solved by traditional extensions of linear Perceptron.
A well-behaved solution can be attained through dynamic
margin constraint during SGD procedures. Moreover, cost of
the training time can be saved through active set technique
meanwhile preserving its accuracy. Experiments in contexts
of large-category learning task justify the efficacy and effi-
ciency of PL-MQDF.
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