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Abstract — In Handwritten Character Recognition, zoning is 
rigtly considered as one of the most effective feature extraction 
techniques. In the past, many zoning methods have been 
proposed, based on static and dynamic zoning design 
strategies. Notwithstanding, little attention has been paid so far 
to the role of function-zone membership functions, that define 
the way in which a feature influences different zones of the 
pattern. In this paper the effectiveness of membership 
functions for zoning-based classification is investigated. For the 
purpose, a useful representation of zoning methods based on 
Voronoi Diagram is adopted and several membership 
functions are considered, according to abstract–, ranked- and 
measurement-levels strategies. Furthermore, a new class of 
membership functions with adaptive capabilities is introduced 
and a real-coded genetic algorithm is proposed to determine 
both the optimal zoning and the adaptive membership 
functions most profitable for a given classification problem. 
The experimental tests, carried out in the field of handwritten 
digit recognition, show the superiority of adaptive membership 
functions compared to traditional functions, whatever zoning 
method is used.  

Keywords-component; formatting; Handwritten Character 
Recognition, Feature Extraction, Zoning, Membership 
Functions, Voronoi Diagrams 

I.  INTRODUCTION  
In the field of handwritten character recognition, zoning 

is considered one of the most effective feature extraction 
technique able to handle handwritten pattern variability, due 
to different writing styles and personal changeability in 
writing. Strictly speaking, given a pattern image B, a zoning 
ZM={z1, z2, ..., zM} of B is a partition of B into M sub-
images, named zones, each one providing information 
related to a specific part of the pattern [1].  

Traditional approaches use static zoning methods, in 
which zoning design is obtained by standard grids that are 
superimposed on pattern images. In this case, no a-priori 
information on feature distribution is used for defining the 
zoning method. More recently, dynamic zoning techniques 
have been proposed, in which zoning design is considered as 
an optimization problem and the optimal zoning method is 
found as the zoning which maximizes the classification 
performance, estimated by a well-defined cost function 
associated to the classification task [2, 3]. For this purpose, 
Voronoi Diagrams have been recently proposed for zoning 
description, since they provide, given a set of points (named 
Voronoi points) in continuous space, a means of partitioning 

the space into sub-regions (named zones) according to 
proximity relationships among the set of points [4].  

Unfortunately, although zoning is largely adopted and its 
effectiveness is widely demonstrated, aspects related to the 
choice of feature-zone membership functions have not been 
addressed yet. Notwithstanding, membership functions play 
a crucial role in exploiting the potential of a zoning method 
since they should be able to model the way in which the 
features detected in a pattern influence different zones. Thus, 
when zoning is used, the choice of a membership function 
needs specific attention.  

Starting from this consideration, this paper investigates 
the effectiveness of traditional membership functions and 
introduces a new membership function with adaptive 
capabilities. Moreover, the paper  presents a real-coded 
genetic algorithm for determining both the optimal zoning 
method, based on Voronoi Diagram, and the adaptive 
membership function most profitable for a given 
classification problem. 

The experimental tests have been carried out in the field 
of handwritten digit recognition, using datasets extracted 
form the CEDAR database. The results show that the 
effectiveness of a zoning method strongly depends on the 
membership function considered. In addition, they 
demonstrate that adaptive membership functions are superior 
to traditional functions, whatever zoning method is used.  

The paper is organized as follows. Section II introduces 
the zoning methods and the description technique by 
Voronoi Diagram. Zoning-based classification along with the 
problem membership functions selection is focused in 
Section III. Section IV presents the new class of adaptive 
membership functions and its application for classification 
using a real-coded genetic algorithm. Section V shows the 
experimental results, carried out on handwritten digits 
extracted by the CEDAR database. The conclusion of the 
paper is discussed in Section VI. 

II. ZONING DESCRIPTION BY VORONOI DIAGRAM 
Voronoi Diagram is a widespread technique of 

computational geometry that has been applied to several 
fields, ranging from biology to chemistry, from VLSI chip 
design to medicine, form physics to cartography [4]. Strictly 
speaking, given a set of a finite number of M distinct points 
p1,p2,…,pM in the Euclidean plane, the Voronoi Diagram is 
the partition of the plane into M zones z1,z2,…,zM that 
reflects proximity relationships among the set of points. In 
other words, each point pi determines a region zi that is the 
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locus of points which are closer to pi than to any other point 
of the set, according to the Euclidean distance [4].  

Voronoi Diagrams have been recently used for zoning 
description [3, 5]. Static zoning methods are defined without 
using a-priori information on feature distributions. They are 
designed according to personal experience of the designer 
and experimental tests. As described in the literature, static 
zoning generally use regular partitioning criteria of the 
pattern image [1, 2]. Typical static zonings divide a Dx × Dy  
pattern image (Dx: image width, Dy: image height} into r × s 
identical rectangles [2]. A regular  r × s zoning is represented 
by a Voronoi Diagram based on the set of  M (M= r⋅s) 
Voronoi points P={p1, p2, ..., pM}, with  

pi  = ( pxi ,pyi )      i=1,2,…,M                 (1) 
where: 

• pxi=(1/2+kx) ⋅ Dx / s     ,  kx =0,1,2,…,s-1  
• pyi=(1/2+ky) ⋅ Dy / r    ,  ky =0,1,2,…,r-1. 

being    i = 1 + kx ⋅ r + ky  .  
Dynamic zoning methods are defined on the basis of a-

priori information on feature distributions, according to a 
specific optimality criterion [3].  Unlike static methods, that 
use standard partitioning criteria of the pattern image, 
dynamic zoning methods consider zoning design as an 
optimization problem and the optimal zoning Z*M={z*1, z*2, 
..., z*M} is found as the zoning for which the cost function 
CF(ZM) associated to classification is minimum [3, 5]. Also 
in this case, if a zoning method ZM={z1, z2, ..., zM} is 
described by the set of Voronoi points P={p1, p2, ..., pM}, the 
optimal zoning design can be re-formulated as the problem 
of finding the set of Voronoi points P*={p*1, p*2, ..., p*M} so 
that the corresponding zoning method Z*M={z*1, z*2, ..., 
z*M} (i.e. Z*M  is the Voronoi Diagram defined from the set 
P*) leads to the minimum of the cost function associated to 
classification performance. 

 
 
 
 
 
 
 
 
 

(a) Z3x3                         (b)  Z*
9 

Figure 1.  Static and dynamic zoning methods. 

Figures 1 show two zoning methods represented by Voronoi 
Diagrams (the Voronoi points in the figures are also 
reported). Figures 1a shows the static zoning method based 
on a 3x3 grid (Z3x3),  Figures 1b shows the dynamic zoning 
method of 9 zones (Z*

9).  

III. ZONING-BASED CLASSIFICATION  
Let us consider the classification of a pattern x into one 

of the classes in Ω = {C1 ,C2, ...,CN} by the features of the set 
F={f1, f2,...,fT} and using a zoning method ZM={z1, z2, ..., zM}. 
In this case x can be described by a matrix (MATx) of TxM 
elements, where each element MATx(i,j) reports the 

influence of the features of type  fi  (i=1,2,…,T) detected in x 
on zone zj (j=1,2,…,M). In other words, let fi(1), fi(2),…, 
fi(q),…, fi(Qi) be the Qi instances of  fi  in x, it results:  

 ∑
=

=
i

q

Q

q
jix wjiMAT

1

),(
 

(2) 

where wiqj is the degree of influence of the instance fi(q) on 
zone zj. 

In general, let ZM={z1, z2, ..., zM} be a zoning method, for 
each instance of fi detected at point pfi, the influence weights 
wij are determined on the basis of proximity conditions 
between the position of  fi and zj, j=1,2,…M. More precisely, 
let  

ZM={z1, z2, ..., zM}                               (3) 
be a zoning method corresponding to the Voronoi points  

P={p1, p2, ..., pM},                              (4) 
where zj  is the Voronoi region corresponding to the Voronoi 
point pj , j=1,2,…,M; 
Furthermore, let qi  the point in which feature fi is found and 
let  

dij=dist(qi, pj)                                 (5) 
be the Euclidean distance between qi  and pj;  

The Ranked Index Sequence (RISi) associated to the 
feature fi and denoting the sequences of zones, ranked 
according to their proximity to qi, is defined as follows: 

RISi = < i1, i2, …, im, im+1,…, iM >                (6) 
so that  

• im∈{1,2,…,M} ,  ∀m=1,2,…,M ; 
• im1≠im2  ,   ∀m1,m2=1,2,…,M  , m1≠m2 ; 

and for which it results  
dim1  <  dim2    ,     m1 < m2   , ∀m1,m2=1,2,…,M            (7) 

(it is also assumed that, if dim1 = dim2 ,  then im1 precedes im2 ,  
if m1<m2). 

Furthermore, let  
Counti(j)                                   (8) 

be the function providing the position of the index j (i.e. 
concerning zone zj) in the sequence RISi  (i.e. counti(j)=m for 
j=im, according to eq.(6)).  

Under these assumptions, the following feature-zone 
membership functions can be considered [6]: 

 
1. Abstract-level membership functions: 

  Membership functions at abstract-level assign Boolean 
influence weights to the zones:  

• The Winner-takes-all (WTA) membership function: 
o wij=1   if   counti(j) =1                           (9a) 
o wij=0 otherwise;                                    (9b) 

• The k-Nearest Zone (k-NZ) membership function: 
o wij=1  if counti(j)∈{1,2,…,k}             (10a) 
o wij=0  otherwise                                  (10b) 

 
2. Ranked-level membership functions: 

  Membership functions at ranked-level assign integer 
influence weights to the zones: 

• The Ranked-based (R) membership function: 
o wij=M-m   if counti(j) =m                      (11) 
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3. Measurement-level membership functions: 
  Membership functions at measurement-level assign real 

influence weights to the zones. Three measurement-level 
membership functions are here considered  : 

• The Measurement-based membership functions:  
 - Linear Weighting Model (LWM)  

o wij=1 / dij                                               (12)  
- Quadratic Weighting Model (QWM)  

o wij=1 / dij
2                                              (13)   

- Exponential Weighting Model (EWM)  
o wij=1 / e  λ⋅dij                                           (14)   

In addition, in this paper, a new adaptive technique to 
membership function design is introduced. It starts from the 
consideration that pattern features are spatially distributed 
according to local characteristics. In other words there are 
parts of the patterns in which features are confined to a small 
area (stable regions), as well as regions in which features are 
much more spread over a large area (variable regions). 
Therefore, membership function could be able to adapt itself 
to the local characteristics of patterns. For this purpose the 
following Adaptive Weighting Model (AWM) is considered. 
In particular for the each zone zj we define an adaptive 
function of the kind  

 wij = e – λj⋅dij ⋅  .                         (15) 
where λj  is a parameter determining the falling rate of the 
weighting model of zone zj. 

The adaptive model allows to define a wide range of 
weighting functions, depending on the falling rate λj, 
j=1,2,…,M. In particular, as the value of λj decreases, the 
area of influence of feature fi augments and involves more 
and more zones of ZM. Figure 2 shows the adaptive 
weighting models for different values of  λj.  It is worth 
noting that AWM works as a traditional WTA strategy, for 
λj=10; i.e. in this case feature fi  has influence (with wij=1) 
only on the zone zj in which it is has been found. Conversely, 
when λj=0, fi  has the same influence (with wij=1) on all 
zones, no matter where fi has been found.  
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Figure 2.  Adaptive Exponential Model (eq. 15).  

IV. ADAPTIVE MEMBERSHIP FUNCTIONS FOR 
CLASSIFICATION BY VORONOI DIAGRAM  

As stated in the previous sections, dynamic zoning design 
can be considered as an optimization problem. Of course, 
whatever zoning ZM={z1, z2, ..., zM} is considered, a 
fundamental role for the classification aims is also played by 
the feature-zone membership functions FM={λ1, λ 2, ..., λM}, 
where λj is the exponential value of the adaptive weighting 

model associated to zj. Therefore, in this paper, the following 
cost function is used, which depends on both zoning method 
(ZM) and membership function (FM): 

CF(ZM , FM) = η ⋅Err(ZM , FM) + Rej(ZM , FM)       (16) 
where [5, 21]:  
 Err(ZM, FM) is the error rate (estimated on the learning set);  
 Rej(ZM, FM)  is  the  rejection  rate    (estimated   on the 
learning set);  

 the coefficient η is the cost value associated to the 
treatment of an error with respect to a rejection. 

Moreover, since Voronoi Diagram is used for zoning 
description and the Adaptive Weighting Model is proposed as 
membership function, the problem of optimal zoning design 
becomes:  

Find the sets   
• {p*1, p*2, ..., p*M} (Voronoi points)  
• {λ*1, λ *2, ..., λ*M} (falling values) 

so that:  
CF(Z*M, F*M)  =  min{ ZM,F M}  CF(ZM, FM)        (17) 

with: 
o Z*M ={z*1, z*2,…, z*M} , z*j  being the Voronoi region 

corresponding to   p*j ,   ∀j=1,2,…,M ; 
o ZM ={z1, z2,…, zM} , zj  being the Voronoi region 

corresponding to pj  ,  ∀j=1,2,…,M  . 
and 
o F*M ={ λ*1, λ*2,…, λ*M} , λ*j  being the falling value of 

the adaptive weighing model associated to the zone z*j ,   
∀j=1,2,…,M ; 

o FM ={λ1, λ2,…, λM}, λj  being the falling value of the 
adaptive weighing model associated to the zone zj ,   
∀j=1,2,…,M .  

In order to solve the optimization problem (17), a genetic 
algorithm is proposed for the design of the adaptive 
membership function together with the optimal zoning [7]. 

The initial population Pop={Φ1, Φ2, ...,Φι, ... ,ΦΝPop}  for 
the genetic algorithm is created by generating  Npop random 
individuals (Npop even). Each individual is a vector  
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where each element  
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(19) 

consists of:  
• pj: a point defined as pj=(xj,yj) , that corresponds 

to the Voronoi point of the zone zj of ZM={z1, z2, 
..., zM};  

• λj: a falling value that defines the adaptive 
weighting model for the zone zj. 

Consequently, the fitness value of the individual  (eq. 
(18)) is taken as the classification cost CF(ZM, FM), obtained 
by eq. (17), where:  

• ZM={z1, z2, ..., zM} is the Voronoi Diagram, being zj 
the Voronoi region corresponding to  pj, 
∀j=1,2,…,M. 

• FM ={λ1, λ2,…, λM}, is the set of adaptive 
membership functions, being λj  the falling value of 
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the adaptive weighing model associated to the zone 
zj , ∀j=1,2,…,M. 

From the initial - population, the following genetic 
operations are used to generate the new populations of 
individuals [7]: 

 
a) Individual Selection: Npop/2 random pairs of 
individuals are selected for crossover, according to a 
roulette-wheel strategy. 

 
b) Crossover: arithmetic crossover is used to combine 
information from diverse individuals. Let             
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and    
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be two individuals selected for crossover, the two offspring 
individuals  
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and    
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of the next generation are obtained as linear combination of 
the parent individuals, according to the random values α, β 
∈[0,1] : 

pa
s=α⋅pa

s+(1- α)⋅pb
s;               (22a) 

pb
s=α⋅pb

s+(1- α)⋅pa
s                        (22b) 

and  
λb

s=β⋅λb
s+(1- β)⋅λa

s                          (22c) 
c) Mutation: a non-uniform mutation operator has 
been used. Let us consider the individual Φι   and an element 
(see eq. (19)) selected for mutation, according to a mutation 
probability Mut_prob. The non-uniform mutation changes 

⎥
⎦

⎤
⎢
⎣

⎡

j

jp
λ

 in the new element 
⎥
⎦

⎤
⎢
⎣

⎡

j

jp
λ~
~

 (being
)~,~(~

jjj yxp =
)  that is 

defined as follows: 
 

c.1) Concerning 
)~,~(~

jjj yxp =
, it results (Fig. 3): 
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where:  
• φ is a random value generated according to a 

uniform distribution, φ∈[0,2π[; 
• δ is a displacement determined according to 

the following equation: 
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being: 
○ ν a random value generated in the range [0, 1], 

according to a uniform distribution; 
○ δ_displ  the maximum displacement allowed; 
○ b a parameter determining the degree of non-uniformity; 
○ iter   the counter of the generations performed; 
○ Niter the maximum number of generations. 

It is worth noting that eq. (29) causes the operator to 
search the space almost uniformly initially, when iter is 
small, and locally in later stages [7].  

c.2) Similarly, concerning jλ~
, we have: 
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where  
○ s is a random Boolean value generated according to a 

equally-distributed probability function; 
○ η is a random value generated in the range [0, 1], 

according to a uniform distribution; 
○ λ_displ  the maximum displacement allowed; 
○ c a parameter determining the degree of non-uniformity; 
and where, also in this case, iter denotes the counter of the 
generations performed and Niter denotes the maximum 
number of generations. 

 
 
 
 
 
 
 
 
 
 

Figure 3.  The Mutation Operator 

• Elitist Strategy: from the Npop individuals generated 
by the above operations, one individual is randomly removed 
and the individual with the minimum cost in the previous 
population is added to the current population. 

Steps from (a) to (d) are repeated until Niter successive 
populations of individuals are generated. When the process 
stops, the optimal zoning is obtained by the best individual 
of the last-generated population. 

V. EXPERIMENTAL RESULTS  
The experiments have been carried out using the set of 

handwritten numeral digits Ω1={0,1,2,3,4,5,6,7,8,9} 
extracted from the CEDAR database (BR directory) [8]. 
After normalization of each the pattern image to a size of  
72x54 pixels, the skeleton of the pattern is derived through 

    p1 
                         p5 

               p2                              

 
 

              p3 
                           
                           

4
~p

4p

)~,~(~
444 yxp =

),( 444 yxp =

δ

1000



the Safe Point Thinning Algorithm [9]. Successively, the 
feature set F={f1,...,f9} is considered for pattern description, 
where (see [10] for more details):   f1 - holes; f2 -  vertical-up 
cavities; f3 - vertical-down cavities; f4 - horizontal-right 
cavities; f5 -  horizontal-left cavities; f6 - vertical-up end-
points;  f7 - vertical-down end-points; f8 - horizontal-right 
end-points; f9 - horizontal-left end-points. 

In order to pre-estimate the most profitable parameter 
values for the Genetic Algorithm, some preliminary pilot 
tests have been conducted. According to previous studies in 
the literature [5, 7], the following parameter values have 
been considered: NPop=10; Niter=300; Mut_prob=0.35; 
δ_displ=5 ; b=1.0; λ_displ=0.5, c=3.0. Figures 4 and 5 show 
the result obtained for the specific case of M=9, when 
handwritten digits are considered. Figure 4 shows the 
optimal zoning Z*

9 , Figure 5 shows the set of optimal 
membership functions F*

9.  

 
Figure 4.  The Optimal Zoning Z*

9 
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Figure 5.  The Optimal Membership Function for F*

9 

Table I reports the experimental results by comparing the 
recognition rate of different membership functions on static 
and dynamic zoning methods. The results have been 
obtained according to 1-NN classifier and a k-fold cross-
validation technique (k=10). The results show that dynamic 
zoning methods outperforms static methods, whatever 
number of zones (M) and Membership Function (F) is 
considered.  In addition, the results demonstrate that AWM 
is always superior to other membership functions, whatever 
zoning is used. More precisely, the best results are achieved 
when AWM is used and the pattern image is dynamically 
partitioned into M=9 zones. In this case, the recognition rate 
is equal to 92%. The improvement with respect to a static 
zoning method (with M=9 zones) is equal to 14%. The 

improvement with respect to non-adaptive membership 
functions is up to 77%.  

 
Table I. Experimental Results: Recognition Rate (η=5) 

M
 

Zoning 
Performance 

Abstract Ranked Measurement Adaptive
WTA 2NZ 3NZ R LWM QWM EWM AWM 

4 Z2x2 0.54 0.49 0.45 0.45 0.40 0.42 0.49 0.57 
Z*

4 0.79 0.75 0.60 0.68 0.53 0.56 0.81 0.84 

6 Z3x2 0.74 0.70 0.62 0.50 0.44 0.50 0.73 0.79 
Z*

6 0.87 0.84 0.75 0.62 0.52 0.57 0.87 0.89 

9 
Z3x3 0.80 0.73 0.69 0.46 0.47 0.51 0.78 0.81 
Z*

9 0.87 0.84 0.79 0.53 0.52 0.58 0.89 0.92 

16 Z4x4 0.82 0.79 0.77 0.44 0.49 0.47 0.80 0.81 
Z*

16 0.88 0.85 0.84 0.54 0.54 0.63 0.90 0.91 

25
Z5x5 0.81 0.79 0.76 0.47 0.46 0.49 0.73 0.85 
Z*

25 0.89 0.87 0.85 0.55 0.57 0.65 0.90 0.91 

VI. CONCLUSION 
This paper addresses the problem of membership function 
selection for zoning-based classification. Traditional 
membership functions, based non-adaptive strategies have 
been evaluated and compared with and a new adaptive 
membership function. The experimental results, carried out 
in the field of handwritten numeral recognition, demonstrate 
that the adaptive membership function leads to the best 
classification results, when compared to traditional 
membership functions.  
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