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Abstract—This paper presents a methodology for shape
recognition that focuses on dealing with the difficult problem
of large deformations. The proposed methodology consists in
a novel feature extraction technique, which uses a non-rigid
representation adaptable to the shape. This technique employs
a deformable grid based on the computation of geometrical
centroids that follows a region partitioning algorithm. Then, a
feature vector is extracted by computing pixel density measures
around these geometrical centroids. The result is a shape
descriptor that adapts its representation to the given shape
and encodes the pixel density distribution. The validity of
the method when dealing with large deformations has been
experimentally shown over datasets composed of handwritten
shapes. It has been applied to signature verification and
shape recognition tasks demonstrating high accuracy and low
computational cost.

Keywords-Shape recognition; Non-rigid representation; Ge-
ometrical centroids; Pixel density

I. INTRODUCTION

Shape recognition is one of the classic problems in

Computer Vision. It has been tackled from different points

of view and it is in constant evolution. This is due to the fact

that shape recognition is used in a multitude of applications

with important challenges such as noise, degradations or

elastic deformations. Therefore, shape descriptors should be

robust enough in order to guarantee intra-class compactness

and inter-class separability in the presence of distortions.

In our case, we are interested in shape descriptors that

could be applied to handwriting recognition. This is one

of the applications where a large variability poses a big

challenge to shape descriptors. Several descriptors have been

applied to this field (1). For instance, the curvature scale

space (CSS) descriptor (2), which successively blurs the

shape contour by convolving it with a Gaussian kernel,

where the scale is increased at each level of blurring. It is

tolerant to deformations but it can only be used for closed

contours. Zernike moments (3) introduces a set of rotation-

invariant features based on the magnitudes of a set of orthog-

onal complex moments of the image. Another well-known

descriptor is Shape Context (4), which selects n points from

the contour of the shape, and for each of them, computes

the distribution of the distance and angle with respect to the

other points. It is tolerant to deformations, and is able of

dealing with open regions. In the particular context of hand-

drawn symbol recognition, the Blurred Shape Model (BSM)

(5) has been introduced as a robust descriptor to classify

deformed symbols. It is based on computing the spatial

distribution of shape pixels in a set of pre-defined image

sub-regions taking into account the influence of neighboring

regions. The use of neighborhood information permits to

handle a certain degree of deformation. However, due to

the rigidity of the model, large deformations cause large

differences in the spatial information encoded by the BSM.

We find several shape recognition approaches that are

based on non-rigid representations in the literature. These

are deformable representations that adapt to the shape to be

described. For example, (6; 7) describe shape recognition

methods based on the extraction of features from sub-images

obtained by iteratively partitioning the original image. These

partitions are extracted by dividing sub-images using the

geometrical centroid and following a hierarchical structure.

Then, a descriptor is obtained either by extracting features

related to the density of the resulting sub-images, or by using

the coordinates of the geometrical centroids.

This partitioning procedure can be seen as a non-regular

distribution of geometrical centroids located over regions of

the image with high density, i.e., a non-regular distribution

of points that is iteratively adapting to the given shape.

Therefore, this procedure can be used to improve the BSM in

order to avoid its rigid grid-based representation. The main

contribution of our work is the integration of this deformable

scheme in the BSM approach in order to build a new method

capable of dealing with deformations. The result is a new

descriptor that will adapt its representation to the given

shape using an iterative region partitioning procedure based

on geometrical centroids. Then, using this new distribution

of geometrical centroids, that can be seen as a deformable

grid, we will extract the BSM-based pixel density measure

in order to compute the final shape descriptor.

The ability of our method to deal with deformations has

been proved using two applications closely related to shape

recognition: off-line signature verification and symbol recog-

nition. For signature verification, we will use as benchmark

the GPDS signature corpus (8), and we will compare our

results with Vargas et al. methods (9; 10), which reports

the lowest EER in this dataset. For symbol recognition, we

will use the NicIcon dataset (11), composed of handwritten

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.200

987



symbols from different writers. These experiments will show

the following facts: first, that our method is able to deal with

large deformations, second, that outperforms the original

BSM, and finally, that its performance in signature verifi-

cation is comparable with specific methods in the literature

when working with random forgeries.

The rest of the paper is organized as follows: Section II

is devoted to explain the proposed method, while Section III

explains the classification technique used. The explanation of

the experiments, which includes the experimental protocols

and the datasets used, is conducted in Section IV. Then,

performance results, as well as the comparison with the

original approach and the state of the art, are shown in

Section V. Finally, Section VI concludes the paper.

II. METHODOLOGY

As we stated in the introduction, the proposed model is

based on the Blurred Shape Model (BSM). So first, we

will give a brief introduction about this method. Then, we

will detail the new representation proposed to deal with

deformations, and the computation of the new descriptor.

A. Blurred Shape Model

The main idea behind the BSM descriptor (5) is to

describe a given shape by a probability density function

encoding the probability of pixel densities of a certain

number of image sub-regions. Given a set of points forming

the shape of a particular symbol, each point contributes

to compute the BSM descriptor. This is done by dividing

the given image in a n × n grid with equal-sized sub-

regions (cells). Then, each cell receives votes both from

the shape pixels located inside its corresponding cell, and

also from those located in the adjacent cells. Thereby, every

pixel contributes to the density measure of its sub-region

cell, and its neighboring ones. This contribution is weighted

according to the distance between the point and the centroid

of the cell receiving the vote. In Fig. 1 an example of the

contribution for a given pixel is shown. The output is a vector

histogram, where each position contains the accumulated

value of each sub-region, and contains the spatial distribution

in the context of the sub-region and its neighbors.

(a) (b)

Figure 1. BSM density estimation example. (a) Distances of a given
shape pixel to the neighboring centroids. (b) Vector descriptor update using
distances of (a).

B. Non-rigid feature extraction

The pixel density distribution encoded by the BSM has

been shown to obtain good results when dealing with hand-

written symbol recognition (5). However, the rigidity of the

model, due to the regular grid-based representation, is not

suitable when dealing with large elastic deformations. We

propose a model to capture the pixel density distribution

but using a deformable grid representation. Instead of the

regular grid of size k × k we will place over the image

a set of k × k points following a non-regular distribution.

These points, denoted as focuses, will accumulate votes of

the neighboring pixels weighted by their distance as it is

done in the original approach. Moreover, instead of defining

the neighborhood as a set of fixed cells of the grid, it will

be defined as an arbitrary h×w influence area centered on

the focus, which will provide more flexibility. The size of

this area is the same for all the focuses.

Focus distribution. The distribution of focuses in the

image will be driven by the idea of maximizing the pixel

density around the focus. Consequently, focuses will be

distributed over the shape to be represented, i.e., the grid
will be adapted to the shape of the object. Our method is

based on the region partitioning procedure of the Adaptive

Hierarchical Density Histogram (AHDH) (6), which consists

in iteratively producing regions of the image using the geo-

metrical centroid estimation. The coordinates of the focuses
will be the position of these geometrical centroids.

First, we consider the binary image as a distribution

of shape pixels in a two-dimensional space-background

(Figure 2a). The set of shape pixels is defined as S and

their number as N . Furthermore, we define as Rl
i, i =

{1, 2, . . . , 4l} the i-th rectangular region obtained in the

iteration (or ’level’) l of the partitioning algorithm, and as

F l∈R
2 the set of geometrical centroids of the regions in Rl.

For each level l, the region partitioning procedure estimates

the geometric centroid of all regions Rl
i and then splits each

region into four sub-regions using as a center the geometric

centroid. The new sub-regions generated will form the new

set of regions Rl+1 .The initial region, R0, is the whole

image, and F 0 would contain the geometrical centroid of

this region (Figure 2b). Considering a separate cartesian

coordinates system for each region Rl
i, the geometrical

centroid F l
i is computed using equations

xc =

∑
(x,y)∈Sl

i
x

Nl
i

, yc =

∑
(x,y)∈Sl

i
y

Nl
i

, (1)

where N l
i denotes the number of shape pixels set Sl

i in the

processed region Rl
i, and (x,y) are the pixel coordinates.

This iterative procedure finishes when a termination level L
is reached. Then, the final coordinates of the focuses will

be the geometrical centroids computed in the level L, that

is FL. Thus, the number of focuses to represent the shape

(4L) can be determined using this termination level L. An
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(a) (b)

(c) (d)

Figure 2. Focuses distribution computation based on the region partitioning
algorithm: (a) original image, (b), (c) and (d) focuses (in blue) at level 0,
1 and 2 respectively.

example of the distribution of focuses for different levels is

shown in Figure 2.

Features computation. Once the position of the focuses

for a given shape is obtained, we compute two different

output features: a vector histogram f ∈ R
4L , which contains

the density measure of nearby pixels of each focus, and

p ∈ R
2×4L containing the coordinates of the focuses

position. Feature vector f uses the previously mentioned

h × w influence area to calculate the pixel density around

every focus. Focuses will receive votes from the neighboring

shape pixels, which are those inside this influence area
defined around the focus. Based on the BSM (5), this vote

is weighted according to the distance between the pixel and

the focus. Feature vector p contains x and y coordinates

of the position of the focus, normalized by the width and

height of the image, respectively.

III. CLASSIFICATION

For classification a Support Vector Machine classifier is

trained using the feature vectors obtained with our method.

The decision function of a SVM for a test sample with

feature vector �F ′ has the form

g( �F ′) =
∑

�F∈trainingset

α�F y�F k(
�F , �F ′)− β, (2)

where y�F is the class label of �F , α�F is the learned weight

of train sample �F , β is a learned threshold and k(�F , �F ′) is

the value of a kernel function based on a given distance d.

We use the χ2 distance, which has shown good results in

recognition (12)

d(�F , �F ′) =
1

2

n∑

i=1

( �Fi − �F ′
i )

2

�Fi + �F ′
i

, (3)

where n is the dimension of the feature vector. Then, kernel

function is computed using equation

k(�F , �F ′) = e−
1
D d(�F , �F ′), (4)

with D a scalar which normalizes the distances. We set D
to the average χ2 distance between all elements of the train

set (12). Furthermore, when combining features, the kernel

may be extended in a weighted fusion for m features using

A =
m∑

j=1

wj

Dj
d(�Fj , �F ′

j) (5)

k({�F1, . . . , �Fm}, { �F ′
1, . . . , �F ′

m}) = e−
A
W , (6)

with wj the weight of the j-th feature, Dj the normalization

factor for the j-th feature, �Fj the j-th feature vector, and

W =
∑m

j=1 wj . We use the LibSVM implementation (13)

to train the classifier.

IV. EXPERIMENTS

This new descriptor has been experimentally evaluated

for two different purposes: signature verification and symbol

recognition. Following, we will introduce the public datasets

selected for each case, as well as the evaluation protocol and

the performance measure used.

A. Signature verification

Signature verification consists in, given a signature, decide

whether it belongs to a concrete individual or not. That

is, classify the signature as genuine or forgery. We have

evaluated our methodology for off-line signature verification

using the GPDS signature corpus (8) (Figure 3a), which

is divided in two subsets. The GPDS-100 and GPDS-750

signature corpus contains 24 genuine signatures and 24

forgeries of 100 and 750 different individuals, respectively.

Samples have been obtained using different writing ink pens,

and have been digitized with a scanner at 600 dpi. All

signatures are binary images with different sizes.

Two different evaluation protocols are commonly used

in signature verification: skilled forgeries and random forg-
eries. In both protocols we use the same training set config-

uration. For each individual, we randomly choose 5 genuine

signatures as positive samples, and, as negative samples, we

select a genuine signature of each one of the rest of users

in the database (99 for both GPDS-100 and GPDS-750).

For testing, first, the rest of genuine samples (19 signatures)

are selected. Then we choose, in the case of the skilled

(a) (b)

Figure 3. Image samples of the datasets. (a) GPDS. (b) NicIcon.
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forgeries configuration, all available forgeries, and in the

case of random forgeries, another genuine sample of each

one of the rest of users in the database (different sample to

the one used for training). Training and testing procedure

were repeated 10 times with different subsets in order to

obtain reliable results. As evaluation measure, two types of

error were considered: False Rejection Rate (FRR), when

genuine signatures are rejected, and False Acceptance Rate

(FAR), when forgery signatures are accepted. The Equal

Error Rate (EER), which is the value when the FAR and

FRR are equal, is also considered.

B. Symbol recognition

We have also evaluated the new descriptor for the task

of symbol recognition. We will measure the performance

using the accuracy rate in classification over the NicIcon
dataset (11) (Figure 3b). This dataset is composed of 26163

handwritten symbols of 14 classes from 34 different writers

and it is commonly used for on-line symbol recognition,

but off-line data is also available. The dataset is divided in

three subsets (training, validation and test) for two different

settings: writer dependent and writer independent. We have

selected the off-line data with both configurations as bench-

mark to test our method. Every symbol has been binarized

and cropped in an image of 240× 240 pixels.

V. RESULTS AND ANALYSIS

We now show the benefits of the proposed method using

the experiments in Section IV. We have trained the SVM

classifier introduced in Section III with two different con-

figurations of the features explained in Section II: using

only the feature vector f containing the value of the pixel

density around every focus (nrBSMf), and using a fusion in

kernel (Equation (6)) for both pixel density f and coordinates

position p feature vectors (nrBSMf+p).

First, we report results on signature verification in Tables I

and II for skilled forgeries and random forgeries protocols,

respectively. We compare our results with the original BSM,

and also with Vargas et al. methods (9; 10), which report

the lowest EER in the GPDS dataset. We can appreciate

that our non-rigid feature extraction method outperforms the

original grid-based BSM in both subsets with both protocols

proving that the inclusion of a deformable grid is more

capable to deal with deformations. Compared to Vargas et
al. approaches (9; 10), whilst our method is surpassed in

the case of the skilled forgeries protocol, it achieves better

results with random forgeries. These results demonstrate the

good properties of the proposed descriptor to represent the

shape of the signature. In skilled forgeries, specific features

of the signatures, not necessarily related to shape, can be

decisive to achieve a low FAR. In this case (Table I), our

method keeps a low FRR, but lacks in the capacity to

extract the necessary features to differentiate a genuine and a

skilled forgery signature, leading to a high FAR. However, in

random forgeries, where signatures from different writers are

compared, the capacity to capture the basic shape structure

of the signature is the key element to obtain a low FAR, as

is the case with our method. Thus, we demonstrate that our

method achieves a good performance when recognizing the

general structure of the shape is required. Furthermore, for

the specific case of signature verification, our approach may

be improved to deal with skilled forgeries combining it with

specific features not based on shape.

Table I
SIGNATURE VERIFICATION RESULTS FOR SKILLED FORGERIES

Dataset Method FAR(%) FRR(%) EER(%)

GPDS-100

Vargas (9) 5.13 20.82 12.06
BSM (5) 17.85 20.71 19.11
nrBSMf 16.27 16.38 16.29
nrBSMf+p 18.67 14.79 16.93

GPDS-750

Vargas (10) 9.26 27.59 17.36
BSM (5) 32.42 21.15 27.44
nrBSMf 28.78 19.37 24.16
nrBSMf+p 27.72 21.82 25.11

Table II
SIGNATURE VERIFICATION RESULTS FOR RANDOM FORGERIES

Dataset Method FAR(%) FRR(%) EER(%)

GPDS-100

Vargas (9) 0.27 21.87 3.75
BSM (5) 0.11 24.45 4.72
nrBSMf 0.06 16.82 2.76
nrBSMf+p 0.07 14.22 2.35

GPDS-750

Vargas (10) 0.09 19.92 3.28
BSM (5) 0.22 21.44 3.64
nrBSMf 0.07 18.16 2.98
nrBSMf+p 0.04 15.63 2.56

Table III
RESULTS IN THE NICICON DATASET ON WRITER INDEPENDENT (WI)

AND WRITER DEPENDENT (WD)

Configuration Method Accuracy (%)

WI
BSM (5) 75.09
nrBSMf 90.18
nrBSMf+p 90.62

WD
BSM (5) 85.97
nrBSMf 93.55
nrBSMf+p 94.38

In Table III we show results on symbol recognition over

the NicIcon dataset. We see that our method considerably

outperforms BSM. Moreover, note that we obtain a high

accuracy in the difficult WI configuration, where the training

set does not contain samples from writers that appear in the

test set and vice versa. These facts reinforce the idea that the

non-rigid representation that we introduce leads to a better

representation of the shape, tolerant to large deformations

and different writing styles. State of the art, which only

exists for the on-line data, achieves 92.63% and 98.57% of

accuracy rate (11) in classification with a SVM for WI and
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WD, respectively. Comparatively, we see that our approach

is slightly below these recognition rates, but using only off-

line data, which makes the problem much more difficult.

Finally, note that in this case, like in random forgeries, the

combination with the vector of focus position p entails a

slightly increase in the accuracy rate.

A. Parameter selection

Our method has two parameters to be adjusted: termina-

tion level L for the region partitioning procedure, and size

h×w of the influence area around focuses. Termination level

determines the number of focuses M = 4L. This level also

determines the number of horizontal and vertical partitions

of the image, K = 2L. For example, if we set L to 3, K is

equal to 8 and the number of focuses M is 64. The influence

area is defined as a rectangular region where height h and

width w are adjusted wrt K and the height and width of the

image using following equations

h = α ∗ H

K
, w = α ∗ W

K
. (7)

In order to select the best α, which controls the size of

the influence area, we need to reach a trade-off between

the locality and the globality of the encoded information.

With large influence areas, each focus captures more global

information than using small influence areas. This affects

directly the FAR and FRR, as we can see in Figure 4a.

While EER is stable, we can use α to adjust the FAR and

the FRR. Regarding the termination level L, it depends on

the size of the image, and its adjustment is a compromise

between accuracy and dimensionality. Experimentally, we

see (Figure 4b) that accuracy becomes stable for a certain

level, and deeper levels does not contribute to a significant

improvement in the performance. Tables I, II and III show

best results after validation of these two parameters. L is

equal to 5 in both applications. Thus, the length of vectors

f and p is equal to 1024 and 2048, respectively.
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Figure 4. Influence of (a) α in signature verification for the skilled
forgeries protocol where L is set to 4, and (b) L in shape recognition.

VI. CONCLUSIONS

In this paper a novel feature extraction method for shape

description and recognition is described. Experimental study,

including performance evaluation and comparison with ex-

isting methods, shows the ability of our non-rigid descriptor

to capture the structure of the shape and deal with large

deformations, achieving efficiency and satisfactory perfor-

mance. Furthermore, the region partitioning procedure pro-

vides us a hierarchical scheme where features are extracted

at different levels of description. Besides the pixel density

around focuses used in our method, we may consider other

shape-based characteristics related to the focuses as well

as to the resulting sub-regions. A combination of features

extracted from different levels, through machine learning

techniques, would include local and global information, and

might increase the performance of our method. Our recent

work is conducted in this way.
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