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Abstract—In this paper we propose a symbol spotting
technique through hashing the shape descriptors of graph
paths (Hamiltonian paths). Complex graphical structures in
line drawings can be efficiently represented by graphs, which
ease the accurate localization of the model symbol. Graph paths
are the factorized substructures of graphs which enable robust
recognition even in the presence of noise and distortion. In our
framework, the entire database of the graphical documents is
indexed in hash tables by the locality sensitive hashing (LSH) of
shape descriptors of the paths. The hashing data structure aims
to execute an approximate k-NN search in a sub-linear time.
The spotting method is formulated by a spatial voting scheme to
the list of locations of the paths that are decided during the hash
table lookup process. We perform detailed experiments with
various dataset of line drawings and the results demonstrate
the effectiveness and efficiency of the technique.

Keywords-Symbol spotting, Graph factorization, Graph
paths hashing, Graphics recognition, Shape descriptors.

I. INTRODUCTION

Information spotting is a major branch of indexing and re-
trieval methods in document image databases. The research
community is mainly focused in word spotting for textual
documents and symbol spotting for graphical documents.
Nowadays, symbol spotting has experienced a growing in-
terest among the graphics recognition community. It can be
defined as locating a given query graphical symbol into a
set of graphical document images. Example applications of
symbol spotting are finding a mechanical part in a database
of engineering drawings or retrieving invoices of a provider
from a large database of documents by querying a particular
logo. The desired output for a particular query should be a
ranked list of retrieved symbols in which the true positives
should appear at the beginning. Symbol spotting follows
the segmentation and recognition paradox, that is a symbol
spotting architecture does not use a previous segmentation
step followed by a proper recognition method, instead it
conceives to coarsely recognize and segment in a single
step. This demands certain techniques that can handle the
recognition without segmentation and segmentation without
recognition at the same time. The problem of symbol spot-
ting in documents for real world situation is more difficult
as the documents often suffer from different noises (see
fig. 1) resulted in scanning, vectorization, superimposition
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of the graphic and textual parts. Spotting methods are
usually queried by example i.e. the user segments the item
he wants to retrieve from the database and this cropped
image acts as input of the system. This implies the infinite
possibility of the query symbols, which prevents explicit
trainings within the spotting architecture. Symbol spotting
is highly applicable for real time indexing and retrieval of
the dataset containing graphical documents, which demands
high efficiency of the method in terms of computation.
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Figure 1. (a) A floor plan from the FPLAN-POLY database, (b) Zoomed
portion of the selected part (within the red circle) in fig. la shows the
difficulty due to noise, (c) Actual instance of the symbol shown in fig. 1b.

Several attempts have been made for spotting symbols
in graphical documents [1]. The algorithm proposed by
Messmer and Bunke [2] is among the first few approaches.
Graph based methods [3] are also popular, but they often
suffer from computational complexity. Among the others,
Rusifiol et al. have used a technique of splitting the symbols
into several primitives and used region strings [4] and off-
the-shelf shape descriptors [5] to represent them. Nguyen et
al. [6] used a visual vocabulary built on SCIP descriptors for
symbol spotting. Recently Nayef and Breuel [7] proposed a
branch and bound algorithm for spotting symbols in docu-
ments, where they used geometric primitives as features.

Graphs are very effective tool to represent any graphical
elements, especially line drawings. Moreover, when graphs
are attributed by geometric information, this supports various
affine transformation viz. translation, rotation, scaling etc.
On the other hand, subgraph isomorphism is proved to be a
NP-hard problem, so handling a large collection of graphical
documents using graphs is difficult. In this work we use
graph representation in architectural drawing images due to
their robust structural description. Our representation consid-
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ers the critical points detected by the vectorization method as
the nodes and the lines joining them as the edges. To avoid
the computational burden we propose a method based on the
factorization of graphs. The factorization is done by splitting
the graphs into a set of all acyclic paths (Hamiltonian paths)
between each pair of connected nodes; the paths carry the
geometrical information of a structure as attributes. The
factorization creates an unified representation of the whole
database and at the same time it allows robust detection with
certain tolerance to noise and distortion. This also eases the
segmentation free recognition which is important for our
purpose. In our work, the shape descriptors of paths are
compiled in hash tables by the locality-sensitive hashing
(LSH) algorithm [8], [9]. The hashing data structure aims to
organize the similar paths in the same neighborhood in hash
tables and LSH is also proved to perform approximate k-NN
search in a sub-linear time. The spotting of the query symbol
is then done by a spatial voting scheme, which is formulated
in terms of the selected paths from the database. This path
selection is done by the approximate search mechanism
during the hash table lookup procedure of the paths that
compose the query symbol.
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Figure 2. Symbol spotting framework for our method.

Our entire framework can be broadly divided into two
parts viz. offline and online (see fig. 2). The offline part
includes the computation of all the acyclic graph paths in
the database, description of those paths with some off-the-
shelf descriptors and hashing of those descriptors using the
LSH algorithm (see fig. 3). Each time a new document is
being included in the database the entire offline procedure
is repeated to create the updated hash table. For each of the
documents in the database all the computed paths and their
descriptors are stored to reduce the further computation time.
On the other hand, the online part includes the querying of
the graphic symbol by an end user, computation of all the
acyclic paths for that symbol, description of them, hash table
lookup for each of the paths in the symbol and a voting
scheme which is based on the similarity measure of the
paths. The framework is designed to produce a ranked list of
retrievals in which the true positive should appear first. The
ranking is done based on the total vote values (see Section
IIT) obtained by each retrieval.
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The rest of the paper is organized into four sections.
In Section II we present the methodology to represent a
database in terms of the descriptors of graph paths. Section
IIT describes the spotting method of the system. Section
IV contains the detailed experimental results. After that in
Section V, we conclude the paper.

II. GRAPH REPRESENTATION AND SPOTTING
ARCHITECTURE

We use Zernike moments to describe the graph paths.
Zernike moments have been widely utilized in pattern
or object recognition, image reconstruction, content-based
image retrieval etc. but its direct computation takes huge
time. Hence several algorithms have been proposed to speed
up the accurate computation process. For line drawings,
Lambert and Gao [10] also formulated Zernike moments
as computationally efficient line moments.

In order to avoid one-to-one path matching [11], we use
the LSH algorithm which performs an approximate k-NN
search that efficiently results in a set of candidates that
mostly lie in the neighborhood of the query point (path).
The LSH was introduced by Indyk and Motwani [8] and
later modified by Gionis et al. [9]. It is proved to perform
approximate k-NN search in sub-linear time and used for
many real time computer vision applications.
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Figure 3. Hashing of paths provokes collisions in hash tables.

Let G; = (Vi, E;), i = 1,...,n be the set of graphs, each
related to one document in a database. Let E* be the set of
all acyclic paths in the database and ZK (p) = (21, ..., Zq)
€ M7 be the Zernike moments descriptors of a graph path p
€ E*. This point in the d-dimensional space is transformed
in a binary vector space by the following function:

v(ZK(p)) = (Unaryc(z1), ..., Unaryc(xzq)) (1)

Here Unaryc(z) denotes the unary representation function
of x, which results in a binary vector with = number of Is
followed by C' — z number of Os, where C' is the highest
coordinate value in the Zernike moments space. Thus the
distance between two Zernike moments vectors Z K (p;),
Z K (p2) can then be computed by the Hamming distance
between their respective binary representations v(Z K (p1)),
v(ZK(p2)). Actually the eqn. (1) allows to embed ZKs



into the Hamming cube H 4" of dimension d’ = Cd. The
construction of the function in eqn. (1) assumes the positive
integer coordinates of Z K, but clearly any coordinates can
be made positive by proper translation in 93¢, Also the
coordinates can be converted to an integer by multiplying
them with a suitably large number and rounding to the
nearest integers.

Now let F be the set of all hash functions g(z)
that project the binary points v(ZK(p)) to one of the
d' coordinates, The set F can be defined as F

g(z) : {0,1}" = {0,1} |g(z) = 2;,i =1,...,d’}, where
x; is the 7th coordinate of x. The final sets of hash functions
G's can be created by randomly selecting at most K such
hash functions g(x) and concatenating them sequentially.
This actually results in the bucket indices in the hash
tables. The LSH algorithm then creates a set 7 of L hash
tables, each of which is constructed based on different GG;,
(i =1,...,L). L and K are considered as the parameters
to construct the hashing data structures. Now given a query
point ¢ the algorithm iterates over all the hash tables in
T retrieving the data points that are hashed into the same
bucket. The final list of retrievals is the union of all such
matched buckets from different hash tables.

The entire procedure can be better understood with the
following example: let ZK=(1,6,5), ZK>=(3,5,2) and
ZK3=(2,4,3) be three different descriptors in a three-
dimensional (d=3) space with C=6. Their binary represen-
tation after applying the function in eqn. (1) is:

v(ZKy) = 100000 111111 111110
v(ZK5) = 111000 111110 110000
v(ZKs) = 110000 111100 111000

Now lets create a LSH data structure with L = 3 and K = 5.
So we can randomly create 3 hash functions with at most 5
bits in each of them as follows:

G1 = {95,910, 916}
Gy = {917997914791&917}
G3 = {94, 98,913,918}

This defines which components of the binary vector to be
considered to create the hash bucket index. For example,
applying G2 to a binary vector results in a binary index
concatenating the first, ninth, fourteenth, fifteenth and sev-
enteenth bit values respectively. After applying the above
functions to our data we obtain the following bucket indices:

G1(ZKy) = 011, Go(ZK:) = 11111, G3(ZK,) = 0110
G1(ZK>) = 010, Go(ZK,) = 11100, G3(ZK) = 0110
G1(ZK3) = 010, Go(ZK3) = 11110, G3(ZK3) = 0110
Then for a query ZK, = (3,4,5) we have

v(ZK,) =111000 111100 111110
G1(ZK,) = 011, Go(ZK,) = 11111, G5(ZK,) = 0110
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Thus we obtain ZK; as the nearest descriptor to the query
since it collides in each of the hash tables.

Similarly, for each of the graph path descriptors in the
query symbol we get a set of paths that belong in the
database, consequently we get the similarity distances of
the paths in the vectorial space. This similarity distance is
useful during the voting procedure to spot the symbol and
is used to calculate the vote values.

ITII. RETRIEVAL PROCESS

A voting space is defined over each of the images in the
database dividing them into grids of three different sizes
(10 x 10, 20 x 20 and 30 x 30). Multiresolution grids are
used to detect the symbols accurately within the image and
the sizes of them are experimentally determined for the
best performance. That is, we tested the results with five
different grid sizes starting from 10 x 10 to 50 x 50 in
different combination and obtained best results combining
the above mentioned grid sizes. For a particular model
path, we select the best matching paths from the hash table
by the LSH lookup procedure. For each of the selected
paths we accumulate the votes to the 9 neighboring grids
of each of the 2 terminal vertices of that path. The vote
to a particular grid is inversely proportional to the path
distance metric (in this case the Euclidean distance between
the Zernike moments descriptors) and is weighted by the
Euclidean distance to the centers of the respective grids from
the terminal of the selected path. The grids constituting the
higher peaks are filtered by the k-means algorithm applied
in the voting space with k=2. Finally, the occurrences of
the query symbol on the documents are detected by another
hierarchical clustering algorithm which clusters the spatial
points contributed from all the three grids considered. The
total vote values of the grids in each cluster are considered
for ranking the retrievals.

IV. RESULTS AND DISCUSSION

In order to evaluate the proposed spotting methodology,
we present three different experiments. The first experiment
is designed to test the method on the images of real world
floor plans. The second experiment is done to check the al-
gorithm on moderately large dataset which is a synthetically
created benchmark. The last experiments is done to test the
efficiency of the method on the images of handwritten sketch
like floor plans.

The set of available query symbols for each datasets are
used as query to evaluate with the ground truths. For each of
the symbols the performance of the algorithm is evaluated
in terms of precision (P), recall (R) and average precision
(AveP). The interested readers are referred to [12] for the
definition of the previously mentioned metrics for symbol
spotting problem. To have an idea about the computation
time we calculate the per document retrieval time (T) for
each of the symbols. For each of the datasets the mean of



Figure 4. Examples of floor plans from different dataset. (a) A floor plan
from FPLAN-POLY dataset, (b) A floor plan from SESYD dataset, (c) The
same floor plan in fig. 4b degraded with vectorial noise 7=10, (d) The same
floor plan in fig. 4b degraded with vectorial noise r=15.

the above mentioned metrics are shown to judge the overall
performance of the algorithm.
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Figure 5.  Qualitative results of the method, first 10 retrieved regions

obtained by querying the symbol in fig. 6e in the SESYD (floorplans16-
01) dataset.

All the experiments described below are done with the
Zernike moments descriptors with order 7 (dimension d=36).
For LSH the hashing data structures are created with L=10
and K=60. These parameters are experimentally decided
to give the best performance. LSH reduces the search
space significantly, for example SESYD (floorplans16-01)
consists of approximately 1,465,000 paths and after lookup
table construction these paths store in 16,000 buckets, so
compared to one to one path comparison the search space
reduces by 90 times. The time taken to create the hash tables
for each of the database is dependent on the number of paths
each database contains and also on the parameters L, K, the
average time taken is 3 minutes 41 secs (approx.).
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Table 1
RESULTS WITH SESYD DATASET

Database P R AveP T
floorplans16-01  41.33  83.56 5246 0.07
floorplans16-02  52.07 8290 56.17  0.09
floorplans16-03 5555 86.42 71.19 0.07
floorplans16-04 6131 75.02 6589 0.05
floorplans16-05  62.05 9257 67.79 0.08
floorplans16-06  53.50 79.81 60.67 0.07
floorplans16-07  69.38 84.85 6534 0.07
floorplans16-08  56.54 91.09 58.15 0.08
floorplans16-09  59.72  78.67 47.68 0.07
floorplans16-10  57.76 8476 6339 0.08

mean 56.92 8396 60.87 0.07

A. Experiment on FPLAN-POLY

We have tested our method with the FPLAN-POLY
dataset described in [5]. This dataset is a collection of 42 real
floor plans (for example see fig. 4a) and 38 cropped symbols
as the queries. The datasets are available in the vectorized
form and the vectorization is done by the Qgar! software.
This experimentation is done to show the efficiency of the
algorithm in real images, which could suffer from the noise
introduced in the scanning process, vectorization etc.

The recall rate achieved by the method is 93.43% which
shows efficiency of the algorithm in retrieving the symbols.
The average precision obtained by the method is 79.52%
which ensures the occupancy of the true positives in the
beginning of the ranked retrieval list. The precision value
of the method is 77.87% which is also quite good for any
retrieval method. Also the method is efficient in terms of
time complexity since the average time taken to spot a
symbol per document is 0.18 sec.

B. Experiment on SESYD

We have also tested our method in the SESYD (floorplans)
[13] dataset. This dataset contains 10 different sub datasets,
each of which contains 100 different synthetically generated
floor plans (for example see fig. 4b). All the floor plans in
a sub datasets are created upon a same floor plan template
by putting different model symbols in different places in
random orientations and scales. This experimentation is
designed to test scalability of the algorithm i.e. to check the
performance of the method in a sufficiently large dataset.

The mean of different measurements for each of the
datasets are shown in table I. The recall values for all the
datasets are quite good, although the average precisions are
lesser than the previous experiments. This is due to the
existence of the similar substructures (graph paths) within
different symbols, for example, between the symbols in fig.
6c and fig. 6d; between the symbols in fig. 6f and fig.
6g; among the symbols in fig. 6a, 6b, 6i and 6k. These
similarities harm the vote values considered for ranking the
retrievals. There is an interesting observations regarding the
average time taken for the retrieval procedure, which is

Thttp://www.qgar.org/
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Table 11
RESULTS WITH SESYD-VN DATASET

Radius () P R AveP T
r=5 63.64 92.19 6527 0.25
r=10 4749 87.01 56.82 0.26
r=15 3437 82.16 47.80 0.25

0.07 sec. to retrieve a symbol per document image, that is
much lesser than the previous experiment. This is due to
the hashing technique which allows the collision of same
structural elements and insert them into the same buckets.
So even though the search space increases, due to hashing
of the graph paths it remains nearly constant for each of the
model symbols. This ultimately reduces the per document
retrieval time. To get an idea about the performance of the
method we present a qualitative results with first 10 retrievals
on the SESYD (floorplans16-01) dataset (see fig.5).

C. Experiment on SESYD-VN

Finally, the last experiment is done to test the effectiveness
of the algorithm on the hand-drawn sketch like floor plans.
For this we select one of the 16 sub datasets of SESYD
foorplans and introduce vectorial noise with different levels
(for example see fig. 4c, 4d). The vectorial noise is created
by randomly shifting the primitive points (critical points
detected by the vectorization process) within a circle of
radius . We vary r to get different level of vectorial
distortions. For this experiment we have created 3 levels
of difficulties (for » = 5, 10, 15). For all the different
distortions the same ideal model symbols as in the previous
experiments are used as queries. So this experiment also
shows the robustness of the method in capturing invariability
due to noise.

The results are shown in table II. The recall value for
the dataset with minimum distortion (r 5) is quite
good but it decreases with the increment of distortion.
The same incident is observed for average precision also.
The distortion also introduces many false positives which
harms the precision. In this experiment the per document
retrieval time of model symbols increases than the previous
experiment. This is due to the increment of randomness in
the factorized graph paths which decreases the similarity
among them. This compels the hashing technique to create
large number of buckets and hence ultimately increases the
per document retrieval time.

V. CONCLUSIONS

In this paper we have proposed a symbol spotting tech-
nique through hashing the shape descriptors of the graph
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Model symbols in the SESYD dataset.

paths. Graphs are very useful in representing graphical
documents specially the line drawings but they are com-
putationally expensive. To reduce the computational burden
we factorize the graphs into paths, which also helps to
incorporate a noise model for symbol spotting. The hashing
of the graph paths aims to reduce the search space. We
use LSH to perform an approximate k-NN search in sub-
linear time. The symbol spotting is then done by a spatial
voting procedure. We have tested the method on various
noisy datasets and the results are encouraging.
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