
Character n-Gram Spotting in Document Images

Sudha Praveen M., Pramod Sankar K., C. V. Jawahar

Center for Visual Information Technology

IIIT-Hyderabad, INDIA

Email: {sudhapraveen.maremanda@research., pramod sankar@research., jawahar@} iiit.ac.in

Abstract—In this paper, we present a novel approach to
search and retrieve from document image collections, without
explicit recognition. Existing recognition-free approaches such
as word-spotting cannot scale to arbitrarily large vocabulary
and document image collections. In this paper we put forth
a framework that overcomes three issues of word-spotting: i)
retrieving word images not labeled during indexing, ii) allow
for query and retrieval of morphological variations of words
and iii) scale the retrieval to large collections. We propose a
character n-gram spotting framework, where word-images are
considered as a bag of visual n-grams. The character n-grams
are represented in a visual-feature space and indexed for quick
retrieval. In the retrieval phase, the query word is expanded to
its constituent n-grams, which are used to query the previously
built index. A ranking mechanism is proposed that combines
the retrieval results from the multiple lists corresponding to
each n-gram. The approach is demonstrated on a size-able
collection of English and Malayalam books. With a mean AP
of 0.64, the performance of the retrieval system was found to
be very promising.

Keywords-Word-Spotting, Character n-Grams, Recognition-
free, Scalability

I. INTRODUCTION

There are two popular approaches to building search sys-

tems over document image collections: i) Optical Character

Recognition (OCR) and ii) Word-Spotting. OCRs typically

work well for clean documents, but face severe difficulties in

character segmentation and recognition [1] in the presence

of degradations. Further, robust OCRs are not yet available

for many Indian languages [2], which have an extended

character set, with a complex script layout. Word-spotting

approaches [3], [4], [5] overcome some of the drawbacks

of OCRs. Firstly, segmentation at the word level is much

more accurate than character/component segmentation [6],

since degradations typically do not affect the inter-word

spaces. Further, matching at the word-level benefits from the

additional context present in it, allowing it to disambiguate

between similar looking characters by using the appearance

of the entire word.

In a typical word-spotting framework, word-segments of

document images are represented with holistic features. The

word-images are then clustered, by matching their features

using DTW-based distance measures. The clusters thus

formed are used to index the document image collection,

directly in the feature space. Such an indexing scheme is

limited by the vocabulary that is indexed/clustered in an

(OCR)

(C
ha

ra
ct

er
 n

−
G

ra
m

 S
po

tt
in

g)

(Word Spotting)

Figure 1. Traditional approaches index/recognize either characters or
words. In contrast, our approach indexes the character n-grams, i.e. groups
of consecutive characters in the word. With our framework, we fill a
major gap in the problem space, while scaling spotting techniques to large
vocabulary and document collections.

offline phase. If a new word is given as a query, the index

either rejects it, or returns a visually-similar cluster that need

not be semantically relevant. Further, word-spotting is not

directly applicable to partial word matching of a query with

prefixed/suffixed words in the collection. For example, let

us assume that the document collection has an instance of

bicycle, while the query is cycling. Ideally, the document

containing bicycle is relevant to the given query, and should

thus be retrieved. However, that would not be possible

with a regular word-spotting setup. This could possibly be

addressed using a DTW based partial matching [7], but

such techniques are not scalable to large collections. Typical

partial matching on even a few thousand document images

could require many hours of computing time per query, thus

making it infeasible for practical applications.

In this paper, we address the above mentioned short-

comings of character recognition and word-spotting, by

proposing a novel character n-gram spotting framework. A

character n-gram is a sequence of n consecutive characters in

a given word. The various character n-grams for the word

MUSIC are shown in Figure 1. While sufficient work has

been seen in character recognition as well as word-spotting,

little work explored the character n-gram spectrum between

the two extremes. With our approach, we attempt to fill this

gap in the problem space.

There are however certain challenges with this approach.

Firstly, segmentation of a word into its constituent character

n-grams is a non-trivial task, especially in the presence of

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.191

941

cuts and merges that are common in scanned document

images. After segmentation, we obtain all possible character

n-grams from each word. Thus, the number of features

that need to be indexed is multiplied by a large factor.

This would seriously effect the scalability of the indexing

scheme to large collections of document images. Finally,

during querying, a single query is replaced by an expanded

query set consisting of its character n-grams. Combining

multiple retrieved lists and their appropriate ranking needs

to be carefully addressed.

The major contributions of our work are:

• A novel reposing of the word-spotting problem to one

of character n-gram spotting. We believe that character

n-gram is a more useful primitive for indexing and

retrieval of document image collections.

• Making it possible to perform spotting for uncon-

strained vocabulary sets, without the need for exhaus-

tive labeling of the vocabulary.

• Enabling sub-word retrieval in the image space, without

the need for a morphological analyzer.

The approach is designed to scale to large datasets, by

the effective use of efficient indexing schemes. The retrieval

time of our search system, that indexes more than a million

features, is typically less than one second. Our framework

is easily applicable to other languages and scripts.

II. CHARACTER N-GRAM SPOTTING

In word-spotting, an index is built by clustering word-

images extracted from document images. Word-images are

represented using holistic features such as those based on

vertical profiles (see [8] for details). Clusters formed on

these features are used to index the document collection,

either directly or by automatically annotating the clusters [5].

The clusters typically contain multiple occurrences of the

exact same word, since partial matching of words in feature

is quite inaccurate as well as computationally expensive.

The index is thus limited by the vocabulary seen during

the indexing phase, making it difficult to retrieve for unseen

(but similar) queries.

Instead of words, character n-grams are a better primitive

to index document image. n-Grams have been a very pow-

erful tool in traditional information retrieval. Previous ap-

proaches have used n-gram information to refine recognition

explicitly with post-processors, or implicitly by modeling

them in Hidden Markov Models (HMMs). However, little

known work has applied n-grams for retrieval, especially in

a recognition-free environment.

In our work, we treat each word-image as a bag of its

constituent character-n-grams. A character n-gram is a seg-

ment of a word-image that contains n consecutive character

segments. With the presence of multiple characters, character

n-grams provide contextual information, that would aid in

better character disambiguation. Since each word emits a

large number of n-grams, with a relatively small training set,

almost all possible n-gram occurrences could be identified

and indexed. Even in the case of queries that give rise to

rare un-indexed n-grams, other indexed n-grams from the

query would typically suffice for retrieval.

The character n-grams could either be indexed in the

feature space, or in the text domain by manual or automatic

annotation. Thus, character n-gram spotting encompasses

both OCR and word-spotting approaches, and augments

them by evidence from matching n-grams. In this work,

we shall limit ourselves to indexing in the feature space,

leaving the task of obtaining textual labels for future work.

Henceforth, when we mention n-grams, it means character

n-grams represented in the visual feature space, and not the

usually referred word n-gram probabilities.

A. Indexing Phase

In character n-gram spotting, all word-images are seg-

mented into their constituent character n-grams. In the index-

ing phase, the word-images of bicycle would be segmented

into various visual n-grams such as {b,i,...,e}, {bi,ic,...,le},
{bic,icy,...,cle}, and so on. Features extracted from the visual

n-gram segments are clustered to build an index in the

feature space (text-labels for clusters are not obtained). How-

ever, clustering in visual feature spaces is a computationally

expensive task.

For example, K-Means clustering of feature vectors is

of the order O(N.K), N being the number of data points

to cluster and K is the number of clusters. A large K

is required to ensure that each cluster contains instances

of only one given visual n-gram. However, this clearly

increases the compute time, taking about 31 yrs to cluster

a million visual n-grams with a K of 100,000. This issue

is addressed using Hierarchical K-Means (HKM) [9]. HKM

begins with a small number of clusters - say B, each of

which is expanded to B clusters each and so on up to

a certain depth D. The complexity is now of the order

O(N.B), where B << K , resulting in an indexing time

of 13 hrs for HKM vs 31 years for K-Means. We typically

use a B of 32 and a depth of log(N), N being the number

of data points being indexed.

Similarly KD-Trees were also be used to index the fea-

tures. In KD-Trees [10], the feature space is partitioned by

axis-parallel hyperplanes. The algorithm splits the data in

half at each level of the tree on the dimension for which the

data exhibits the greatest variance. The KD-Tree is looked

up for approximate-NNs, by comparing the query with the

bin-boundary at each level of the tree.

B. Retrieval Phase

In the retrieval phase, the user is allowed to query-by-

example. The query-image is segmented to n-grams and

the features from the query n-grams are looked up in the

previously built index, for the most similar cluster in the

index. For example, if the user queried for cycle, the query

942

is expanded to include all its character n-grams, including

the query word itself.

The cluster of the query feature can be found in B · D

comparisons using our indexing scheme; unlike traditional

indexes (those from K-Means) which would take BD com-

parisons. A linear search within this cluster, is used to rank

the n-grams in the cluster based on similarity with the given

query. The approximate NN lists for the respective n-grams

are then combined and ranked.

The ranking function consists of two parts. If Q is

the query word with length L, then let us denote as

Q1, Q2, ..., QL, the sets of character n-grams for the query.

Let Fi be the set of features corresponding to the n-gram

set Qi. For each F
j
i , the closest cluster of the indexed data,

is given as R
j
i . Each point Pk in the cluster R

j
i is weighted

by its distance from the centroid of the cluster as

W =
(

1 −
d(Pk, R

j
i)

∑

k d(Pk, R
j
i)

)

.

This weight gives more importance to points that are

closer to the cluster center than those at the fringe of the

cluster. The denominator of the fraction normalizes across

the size of the cluster in the feature space. Their values are

independent of the query and can thus be computed in the

offline phase and stored along with the index.

The second part of the ranking function ensures that

longer n-grams are given more weight than shorter n-grams.

We choose to reduce the combined weight of each n-gram

by half for each step of the n-gram, the k-gram will be given

twice the weight of k − 1-gram and so on. The weight for

the n-gram in a query word of length L, is given as

W ′

n =
1

2L−n · (L − n + 1)
.

The two weights are multiplied for each retrieved result,

and the documents corresponding to the ranked list is

presented to the user. In case of multi-word queries, a ranked

retrieval list is generated separately for each word, which

are combined using a modification of the term-frequency

function.

C. Worked-Out Examples

In this section, we shall elaborate the expected retrieval

procedure for some example queries.

Query: cycle, Occurrence: cycle: In the indexing phase,

all instances of cycle are assumed to be clustered together

in the feature space. During retrieval phase, when the query-

image corresponding to “cycle” is given, it is looked-up in

the index, and the closest cluster would be retrieved. This is

essentially how the regular word-spotting framework works,

which is encompassed by our framework.

Language Books Images Words n-Grams Feature Size

English 4 470 82K 1.36M 12G

Malayalam 5 302 47K 1.28M 11G

Table I
DATASET STATISTICS.

Query: cycling, Occurrence:bicycle: During the index-

ing phase, the n-gram cycl occurring across all instances of

bicycle, would be indexed. During retrieval, we segment the

query word-image cycling into its constituent n-grams, each

of which is queried for in the n-gram index. When queried

by the n-gram cycl, all those occurrences of this n-gram from

bicycle are retrieved.

Error Cases: In many cases, there might be many valid

n-gram combinations within a given word. For example, the

word bicycle also contains the word icy, which is not a valid

morphological segmentation. Our framework would however

still query for icy, and retrieve its multiple occurrences from

the collection. Such situations are handled by the ranking

mechanism that we propose, where larger n-grams are given

more weight than smaller ones. It is more probable that a

larger sub-word would be a more valid sub-word than a

smaller one.

III. EXPERIMENTS

Our dataset comes from 4 English books and 5Malayalam

books. The statistics for the dataset are given in Table I.

Groundtruth was created for the English dataset using semi-

automatic annotation techniques [11]. About 70% of the data

was annotated and the groundtruth was used only to evaluate

the clustering and retrieval performance and was not used

to index the data itself.

A. Features

The character n-grams are represented with profile fea-

tures [3], which have been shown to perform well for the

word recognition task [6]. Profile features have outperformed

HOG [12] and SIFT [13] based representations, in an

evaluation performed over 32K word-images [6]. The profile

features that are extracted include:

• The Projection Profile is the number of ink pixels in

each column.

• Upper and Lower Profile measures the number of

background pixels between the word and the word-

boundary

• Transition Profile is calculated as number of ink-

background transitions per column.

Each profile is a vector whose size is the same as the

width of the word. A fixed length representation is typically

required to use simple distance measures, which can then

be used for easy indexing. This is obtained by scaling all

word-images to a canonical size and extracting profiles from

them.

943

B. Indexing of Character n-Grams

Indexing of the features was performed using the L2-

Norm, for all the character n-grams. We first attempted to

build separate indexes for each n-gram. However, since the

character segmentation was not accurate, the same character

n-gram was present in multiple indexes. We abandoned this

approach and instead build a single index across all n-gram

segments.

In the n-gram segmentation phase, we inevitably en-

counter segmentation errors, such as two characters being

merged together, or a single character being segmented to

two. In the case of cuts, the character will be represented as

a bi-gram and higher order gram will treat it as a regular pair

of characters. When indexed, there will always be n-gram

components that correspond to the given character, hence

allowing it to be retrieved. For merged characters, the two

characters will be considered as a unigram. Instead of tri-

grams, bi-grams are used to represent the same information.

By merging all the grams into one indexing scheme, we rely

on the features to match across different n-grams, as long

as they are visually similar. Thus, the indexing is mostly

insensitive to character segmentation errors.

The indexing scheme we use is a combination of KDTrees

and HKM, provided by the FLANN software [10]. The

entire feature set from our book collection comprising of 12

GB cannot be indexed in one instance. Hence, the data is

divided into six subsets, each of which is indexed separately.

Each subset is then matched against every other subset and

the (approximate) nearest neighbors are aggregated. Typical

indexing time is 7 minutes per subset, while the looking-up

of nearest neighbors for a given pair of index and data-subset

is about 5 minutes.

The indexing accuracy was evaluated using the precision-

recall measures. For a given n-gram sequence, the corre-

sponding ranked list of approximate NNs is obtained from

the indexing scheme. If the given query has R relevant

documents, as given by the groundtruth, the precision is

calculated over the top R retrieved results. The Precision@R

values for different n-gram lengths are presented in Table II.

It can be seen that the precision is high at the character and

bi-gram level, as well as at larger n-grams, but is poor for

smaller n-grams (3-7). The recall is poor for the smaller n-

grams because the number of occurrences of each character

are typically in many thousands, while only a few hundred

are retrieved from the index. The recall improves with larger

n-grams, with a recall of 60% at the 10-gram, resulting in a

70% precision. Thus, bigger n-grams are more reliable than

smaller n-grams, hence they are weighted more in ranking

retrieval results.

C. Retrieval

The retrieval performance was evaluated over a set of

random queries, posed as a corresponding query from the

collection. Each query is expanded to its n-grams, which are

n-gram No. Occurrences Precision @ R Recall

1 1.5M 0.74 0.01
2 1M 0.60 0.06
3 0.6M 0.34 0.13
4 0.4M 0.28 0.22
5 0.2M 0.33 0.28
6 0.15M 0.40 0.35
7 92K 0.48 0.41
8 50K 0.55 0.47
9 27K 0.61 0.53
10 14K 0.70 0.60

Table II
PERFORMANCE OF THE N-GRAM INDEXING AND RETRIEVAL SCHEME

THAT WE EMPLOY IN OUR RETRIEVAL SYSTEM. RESULTS SHOWN HERE

ARE FOR THE GROUNDTRUTHED ENGLISH DATASET.

Figure 3. PR Curves for example queries from English dataset.

in-turn queried for in the index. The retrieved list for each

n-gram is ranked using the weighting function discussed

in Section II-B. The final ranked list is labeled as being

relevant to the query, or not. The Recall-Precision plot for

our retrieval system is shown in Figure 3. The area under

the PR curve, or the mean average precision (mAP) for our

system is a respectable 0.64.

The value of our mAP is poorer than classical word-

spotting, which would typically result in an mAP of 0.8. This

is mostly due to the introduction of noise from similar look-

ing, but distinctive n-grams. For example, there are many

similar looking n-grams, such as {boy, toy}, {com, coin},
etc., that cannot be disambiguated using the n-gram itself.

Such visually similar n-grams get clustered together. During

query time, if the context of the rest of the word cannot

disambiguate between such similar n-grams, errors are found

in the retrieval results. However, the loss in accuracy is an

acceptable cost to alleviating the need to label/train for entire

vocabularies.

Some example retrieval results are shown in Figure 2.

Only those words that matched the query at the sub-word

level are shown here for brevity. Such a sub-word retrieval

was hitherto not possible in a completely recognition-free

944

Query Retrieved Words

ananta anantararn anantavishaalamaaya

kathakal kathakalaayirunnu puraand-akathakal kathakaliluute

choodikkun choodikkunilla choodikkunnatil

Rank: (3) (4) (29) (74)

Rank: (4) (8) (9)

Figure 2. Example retrieval results from Malayalam and English document images. For the query images of on the left column, the retrieved results are
given on the right. The relevant sub-word to the given query is highlighted in green for Malayalam results. The corresponding ITRANS notation for the
Malayalam words is given below the word-images. The rank in the retrieved list for the English words, is given below for the word-images. Clearly, our
approach enables retrieval for word-images that match at the sub-word level. Similar results are not possible to obtain in a regular word-spotting framework.

setup. Clearly, our approach holds much promise both in

performance as well as practical utility.

IV. CONCLUSIONS

In this paper, we presented a new approach to recognition-

free retrieval from document image collections. We over-

come major issues with both OCR and word-spotting ap-

proaches. Our approach allows for out-of-vocabulary re-

trieval, where (labeled) words that were not seen during

training/indexing could also be searched for in the collection.

The framework also performs sub-word retrieval, without

an explicit word-morphology analyzer. The technique is

demonstrated on multiple books from both English and

Malayalam languages. The results were found to be very

promising. Our approach is also directly applicable to other

scripts and languages.

V. ACKNOWLEDGMENTS

Pramod Sankar would like to thank Doug Oard for valu-

able advice on work and life, at SIGIR’10. This work is

supported by Ministry of Communication and Information

Technology, Govt. of India.

REFERENCES

[1] S. V. Rice, G. Nagy, and T. A. Nartker, Optical Character
Recognition: An Illustrated Guide to the Frontier. Kluwer,
1999.

[2] V. Govindaraju and S. Setlur, Eds., Guide to OCR for Indic
Scripts. Springer, Sep 2009.

[3] T. Rath, R. Manmatha, and V. Lavrenko, “A search engine
for historical manuscript images,” in Proc. SIGIR, 2004, pp.
369–376.

[4] T. Konidaris, B. Gatos, K. Ntzios, I. E. Pratikakis, S. Theodor-
idis, and S. J. Perantonis, “Keyword-guided word spotting in
historical printed documents using synthetic data and user
feedback,” IJDAR, vol. 9, no. 2-4, pp. 167–177, 2007.

[5] Pramod Sankar, K. and C. V. Jawahar, “Probabilistic reverse
annotation for large scale image retrieval,” in Proc. CVPR,
2007.

[6] Pramod Sankar K., C. V. Jawahar and R. Manmatha, “Nearest
Neighbor based Collection OCR,” in Proc. DAS, 2010.

[7] A. Balasubramanian, M. Meshesha, and C. V. Jawahar, “Re-
trieval from document image collections,” in Proc. DAS, 2006,
pp. 1–12.

[8] T. M. Rath and R. Manmatha, “Word spotting for historical
documents,” IJDAR, vol. 9, no. 2-4, pp. 139–152, 2007.

[9] D. Nister and H. Stewenius, “Scalable recognition with a
vocabulary tree,” in Proc. CVPR, 2006, pp. 2161–2168.

[10] M. Muja and D. G. Lowe, “Fast approximate nearest neigh-
bors with automatic algorithm configuration,” in Proc. VIS-
APP, 2009, pp. 331–340.

[11] C. V. Jawahar and A. Kumar, “Content-level annotation
of large collection of printed document images,” in Proc.
ICDAR, 2007, pp. 799–803.

[12] J. A. Rodriguez and F. Perronnin, “Local gradient histogram
features for word spotting in unconstrained handwritten doc-
uments,” in Proc. ICFHR, 2008.

[13] E. Ataer and P. Duygulu, “Matching Ottoman words: An
image retrieval approach to historical document indexing,”
in Proc. CIVR, 2007, pp. 341–347.

945

