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Abstract—Real-time recognition of handwritten sentences 
enables fast text input but the dynamic nature of writing 
makes reliable text line segmentation difficult. This paper 
proposes a method for real-time dynamic text line 
segmentation of online Chinese handwriting. The core of the 
method is a statistical classifier for modeling the geometric 
relationship between an ongoing stroke and the previous text 
lines, to assign the stroke into a previous line or form a new 
line. The method can deal with delayed strokes and therefore 
enables robust real-time recognition. We evaluated the 
segmentation performance on a dataset of online Chinese 
handwriting by simulating the real-time writing and 
recognition process. The experimental results demonstrate the 
effectiveness and robustness of the proposed method. 

Keywords-real-time recognition; dynamic text line 
segmentation; stroke-line relationaship 

I. INTRODUCTION

For handwriting-based text input, real-time sentence 
recognition is a better alternative to character recognition 
since sentence writing is more natural and enables faster and 
more accurate input by utilizing contexts. Handwritten 
sentence (character string) recognition is a difficult 
contextual classification problem involving character 
segmentation and recognition, and has been attacked by 
many researchers [1-6]. A feasible approach is the over-
segmentation-based recognition fusing character recognition 
scores, linguistic context and geometric context [5,6]. 

While handwritten sentence recognition is more 
complicated and computationally intensive than character 
recognition, it can be accelerated by real-time recognition: 
the characters are segmented and recognized while they are 
being written. To meet this goal, we formerly proposed a 
real-time handwritten sentence recognition method by 
implementing over-segmentation-based recognition using a 
dynamically maintained candidate segmentation-recognition 
lattice [7]. Since the recognition of candidate characters 
consumes the majority of computing and is performed during 
writing, sentence recognition is obtained immediately after a 
long pen lift (probable end of sentence). 

In sentence-based input, due to the limitation of writing 
area, a sentence or several sentences are often written in 
multiple lines. This makes text line segmentation difficult 
because the lines are short, the strokes are dynamically 

produced, and there are often delayed strokes, which are 
inserted into previous characters or even previous lines. 
Unlike previous text line segmentation methods that mostly 
group strokes into lines after all strokes are produced, the 
dynamic segmentation during writing can only utilizes the 
information of part of strokes. 

Among the previous online document segmentation 
methods, some segment text lines using heuristics or simple 
features like horizontal projection [8,9] and off-stroke 
distances [10]. The methods based on optimizing line-fitting 
objectives [11-13] yield more reliable line partitioning. They 
usually take a hypothesis-and-test strategy to generate 
candidate line partitioning and seek for the optimal 
partitioning by heuristic search. To generate text line 
hypotheses, however, these methods require all the strokes 
have been written. In dynamic text line segmentation for 
real-time recognition, it is impossible and inappropriate to 
construct candidate segmentation hypotheses because the 
ongoing strokes dynamically change the document structure. 
For real-time recognition, line segmentation is performed on 
each stroke rather than on the whole page. So, optimization-
based methods cannot be directly applied to real-time 
recognition. 

In our previous system [7], we segmented ongoing 
strokes into lines using some simple heuristic rules. Despite 
its promise in our preliminary experiments, the simple line 
segmentation is not robust enough. Assignment of strokes 
into wrong lines will cause misrecognition of characters and 
even whole lines. 

 In this paper, we propose a robust method for dynamic 
text line segmentation in real-time recognition of Chinese 
handwritten sentences. We adopt a statistical classifier, 
support vector machine (SVM), to model the geometric 
relationship between the ongoing stroke and the existing text 
lines. By classification based on extracted features of a line-
stroke pair, the classifier judges whether to assign the stroke 
to a previous line or it starts a new line. The method can deal 
with delayed strokes by grouping into previous lines, and 
therefore, it makes the real-time recognition system more 
stable. To evaluate the dynamic segmentation performance, 
we generated multi-line sentences data from an online 
Chinese handwriting dataset containing ink pages. The 
experimental results demonstrate the effectiveness and 
robustness of the proposed method. 
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II. SYSTEM OVERVIEW

Fig. 1 illustrates the flowchart of the real-time 
recognition system. As introduced in [7], it consists of four 
main modules: real-time recognition module, sentence 
recognition module, sentence edition module and language 
association module. While the modules of real-time 
recognition and sentence recognition are the core of the 
system, the other two modules make the system more usable.   

Figure 1. Flow chart of real-time sentence recognition. 

Figure 2. Flow chart of the real-time recognition of a stroke 

The real-time recognition module acts whenever an 
ongoing stroke is produced. Fig. 2 details the real-time 
recognition module. In line segmentation, the system judges 
which line the stroke belongs to. If the stroke belongs to one 
previous line, then the line is updated and over-segmentation 
is performed on the line. If no previous line is found to 
contain the stroke, the stroke is considered to start a new line 
and compose the first segment (a stroke block) of the line. 
The dynamic process of text line segmentation will be our 
focus in this paper, and will be described in Section III. 

The method of character over-segmentation is similar to 
that in [7] except that for assigning strokes into segments, we 
later use an SVM classifier for decision making. If a stroke 
belongs to one previous segment of the line, the system 
updates the segment, otherwise creates a new segment using 
the stroke and finds the position of the new segment in the 
line according to the left boundaries.  

After assigning the new stroke, updated segments or 
newly created segments are merged with previous segments 
to generate new candidate characters, which are recognized 
by a character classifier to assign candidate classes, as 
introduced in [7]. The new candidate characters and assigned 
classes are added to the candidate segmentation-recognition 
lattice. Fig. 3 shows an intermediate candidate lattice and its 
updated form due to a new stroke.  

Figure 3. A candidate lattice (upper) and the updated one due to a new 
stroke (lower). 

After real-time recognition on a new stroke, if the pen lift 
time exceeds a threshold (adjustable by the user, e.g., 0.5s), 
the result of sentence recognition is obtained by path search 
in the updated candidate lattice, performed by the sentence 
recognition module. The sentence edition module is designed 
to correct character segmentation errors and recognition 
errors by manual operations using the pen. The language 
association module is aimed to accelerate the writing process 
by automatically entering successive characters associated 
with the recognized partial sentence. 

III. LINE SEGMENTATION

As this paper concentrates on text line segmentation, we 
will not present the character string recognition implemented 
in the system. For more details, please refer to [7]. In fact, 
any over-segmentation-based character string recognition 
system can be implemented in the real-time recognition 
system if using a dynamic candidate lattice. In the following, 
we focus on the method of dynamic text line segmentation. 

A. Line Segmentation Algorithm 
Algorithm 1 illustrates the process of real-time line 

segmentation and over-segmentation of an ongoing stroke, 
corresponding to those in Fig. 2. Denote the stroke by strk,
and suppose that there are m previous lines, denoted as lines.
In the algorithm, lineIdx  is the index of the text line that the 
new stroke belongs to, and 1lineIdx � �  indicates that the 
stroke starts a new line. The function 
LineStrokeFeature(strk,linei) extracts geometric features 
characterizing the relationship between the stroke and the i-
th line. Based on the features, if the classifier judges that strk 
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belongs to linei, then update linei and perform over-
segmentation on the updated linei. Otherwise, the process 
continues until one line containing the stroke is found. If 
there is no line containing the stroke, the stroke will be 
considered to start a new line and form the first segment of 
the line. 

Algorithm 1. Line segmentation on a new stroke 
Input: Existing lines : lines

Line number: m
A new stroke: strk

Initialization: set 1lineIdx � �
For i=m to 1 

feature = LineStrokeFeature(strk,linei),
Classifier(feature),
if strk belongs to linei

lineIdx=i;
break; 

      else 
 continue; 
End for.
If (lineIdx>0) 

Merge strk into the lineIdx-th line, 
        OverSegmentation(updated lineIdx-th line) 
Else 

Create a new line 1mline �  using strk,
Create the first segment of the line using strk.
m=m+1.

End if. 
End.

B. Training Sample Collection 
We adopt a statistical classifier to model the geometric 

relationship of a line-stroke pair, and to judge whether the 
stroke belongs to the line or not.  

To collect training samples for the two-class classifier, 
we extract samples from a stroke and its temporally previous 
lines. If the stroke belongs to the line, the sample is 
considered to be a positive one, otherwise a negative one. 
Samples can be extracted from online documents containing 
multiple text lines by simulating the real-time writing 
process and extracting features from strokes each paired with 
both its genuine line (forming positive sample) and the 
previous lines (forming negative samples). 

C. Line-Stroke Feature Extraction 
We extract geometric features from a pair of line and 

stroke to characterize the relationship between them, which 
are input to a statistical classifier for decision making. We do 
not rely on temporal feature such as the off-stroke distance 
so as to cope with delayed strokes. Before feature extraction, 
a pair of a line l  and a stroke s  are tentatively merged and 
fitted by linear regression. Denote the merged line as tl . The 
line height that will be used for feature normalization is 
estimated by computing the average height of strokes, as in 
[7]. We extract 22 features from a line-stroke pair, as listed 
in Table I. The features can be divided into four categories: 

1) Five features related to the line l (No.1-5 in Table I). 
2) Two features related to the stroke s (No.6-7). 
3) Four scalar features related to the line tl  (No.8-11). 
4) Eleven scalar features related to the geometric 
relationship between the stroke s  and the line l  as well 
as the line tl  (No. 12-22 in Table I). 

Table I. Line-Stroke Geometric Features (the last column denotes 
whether normalized w.r.t. the text line height or not). 

No. Feature Norm
1-2 Height and width of l Y
3 The number of strokes in l N
4 Average regression error of l : 2

1� Y

5 Horizontal direction of the line l N
6 Height of s Y
7 Aspect ratio of s N
8-9 Height and width of tl Y
10 Average regression error of tl : 2

2� Y

11 Horizontal direction of the line tl N

12 Growth of line height Y 
13 Change of horizontal direction N 
14 Change of average regression error Y 
15 Distance between l  and s , as the minimum 

distance between s  and the strokes in l
Y

16 Common area of  l  and s Y
17-
18

Distances  of upper/lower  bound of s to vertical 
center of  l  along the norm direction of l

Y

19-
22

Distances  between  the upper bounds,  lower  
bounds, upper-lower  bounds, and lower-upper 
bounds of l  and s

Y

IV. EXPERIMENTS

To evaluate the performance of the proposed method, we 
conducted experiments using a dataset of online handwritten 
Chinese texts: CASIA-OLHWDB2.1 (called DB2.1 for short 
in this paper) [14], which contains 1,500 pages in total, 
which are segmented into 17,282 text lines. The dataset is 
partitioned into a training set (1200 pages including 13,758 
lines) and a test set (300 pages including 3,524 lines). 

 In sentence-based input, due to the limitation of writing 
area, users tend to write 3 to 5 text lines and each line 
contains only a few characters, say, not more than eight 
characters. To simulate this situation, we used the DB2.1 to 
generate pages with 3 to 5 text lines, each line consisting of 
six to eight characters. We then simulated the real-time 
writing process and performed dynamic text line 
segmentation on the generated data. 

A. Dataset Generation 
The text lines in DB2.1 contain about 30 characters in 

each line. So we split each line into multiple lines as one 
generated page by making the width of each line not larger 
than five times of the average height of the original lines. Fig. 
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4 shows an example of data generation: (a) is a text page, (b) 
shows three new pages derived from the first three lines in 
(a). Table II provides the details of database DB2.1 and the 
generated database (called GDB2.1 for short in this paper). 

(a) 

           
(b) 

Figure 4. (a) A text page; (b) Three generated pages from the first three lines.

Table II. Details of DB2.1 and generated GDB2.1. 

Databases  #page #line #line/page

DB2.1 train 1200 13,758 11.46 
test 300 3,524 11.74 

GDB2.1 train 13,758 52,316 3.80
test 3,524 13,497 3.83 

B. Performance Metrics 
To evaluate the performance of real-time line 

segmentation, we simulated the real-time process. Given an 
online page, we input strokes in writing order, and whenever 
a stroke is input, the system performs line segmentation and 
updates text lines. After the last stroke is processed, the 
result of line segmentation is obtained. 

Many metrics have been defined for evaluating 
performance of line segmentation [13, 15-16]. We adopt 
some of them and define a new metric for performance of 
real-time line segmentation. 

To define metrics, matches are predefined. A one-to-one 
match is a match where a detected line and a ground-truthed 
line contain identical strokes. And g_one-to-many match 
occurs when the union of two or more result lines equal to a 
ground-truthed line. Similarly, a d_many-to-one match
means the union of two or more ground-thuthed lines equals 
a detected line.  

Among the performance metrics presented in [13], we 
chose detection rate (DR), recognition accuracy (RA) and
entity detection metric (EDM) that are defined as follows: 

1 2
2 _ 2one one g one manyDR w w
N N

� � ,

3 4
2 _ 2one one d many oneRA w w
M M

� � ,

2 DR RAEDM
DR RA
� �

�
�

,

where N is the number of ground-truthed lines, M is the 
number of detected lines, and 1w ~ 4w are all set to 1. DR, 
RA and EDM are similar to recall, precision and F-rate, 
respectively. Page recognition rate (PRR), defined as the 
percentage of pages with no segmentation error, is used to 
measure the page level performance. 

C. Experimental Results 
We used a linear SVM classifier to model the geometric 

relationship of a line-stroke pair because it performs 
efficiently. The two-class SVM is trained on the training set 
of GDB2.1, and line segmentation performance is evaluated 
on the test set of GDB2.1. We compare the proposed method 
with other methods that apply heuristic rules.  Experimental 
results on GDB2.1 are listed in Table II. The off-stroke 
distance method is to segment a line when off-stroke 
distance is larger than a threshold (3*lineHeight in our 
experiments).  Another rule considered is the vertical overlap 
degree, and the overlap degree is defined as 

( + ) -overlap overlap dis0.5*
hei1 hei2 span

, similar to that in [17]. 

The threshold for overlap degree is set as 0.4 empirically. 
The off-over method is to relax thresholds for both the off-
stroke method and the overlap method and then combine 
them to make decisions. 

In fact, the pages in GDB2.1 have very few delayed 
strokes. In this case, Table III shows that the off-stroke 
method performs fairly well and is comparable to the 
proposed classifier-based method. To evaluate the 
performance on pages with delayed strokes, we produce 
delayed strokes for GDB2.1 by changing the writing order of 
a stroke in each page. Specifically, we randomly chose a 
stroke and place it randomly after its original position, 
keeping coordinates unchanged. Experimental results on the 
newly generated GDB2.1 with delayed strokes are listed in 
Table IV.

Table III. Performance on GDB2.1 WITHOUT delayed strokes. 
Methods DR RA EDM PRR 
Off-stroke 0.9225 0.9640 0.9428 0.9225 
Overlap 0.6453 0.4903 0.5572 0.2415 
Off-over 0.9084 0.9456 0.9266 0.6853 
SVM 0.9272 0.9644 0.9455 0.8918 

Table IV Performance on GDB2.1 WITH delayed strokes.
Methods DR RA EDM PRR 
Off-stroke 0.7492 0.7256 0.7372 0.4492 
Overlap 0.2455 0.0971 0.1392 0.0235 
Off-over 0.9074 0.9401 0.9235 0.6960 
SVM 0.9276 0.9616 0.9443 0.8995 

We can see that the performance of the off-stroke method 
deteriorates significantly while the proposed method 
performs stably with delayed strokes. The performance of 
the off-over method remains good because the off-stroke 
constraint is relaxed to tolerate delayed strokes. On both 
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datasets, the inferior performance of the overlap method can 
be attributed to the instability of overlap degree calculation. 

Fig. 5 shows some examples of line segmentation by 
different methods. Fig. 6 shows some examples of incorrect 
segmentation by the proposed method, where the first two 
errors result from the inaccurate estimation of line height in 
the beginning of writing, and the third one maybe due to the 
special shape of the dot stroke. 

(a)      (b)  (c) 
Figure 5. (a) A page without delayed strokes is correctly segmented by 

the off-stroke method; (b) a delayed stroke deteriorates the off-stroke 
method; (c) the page with delayed stroke is correctly segmented by the 

proposed method. 

           
Figure 6. Examples of incorrect segmentation by the proposed method. 

We also compared the performances of line segmentation 
using different classifiers: SVM, linear discriminant function 
(LDF) and single-layer neural network (SLNN). The results 
in Table V show that the SVM and SLNN perform 
comparably well. 
Table V. Performance of different classifiers on data WITH delayed strokes. 

Methods DR RA EDM PER 
SVM 0.9276 0.9616 0.9443 0.8995 
SLNN 0.9262 0.9624 0.9440 0.8873 
LDF 0.5860 0.6196 0.6023 0.4580 

V. CONCLUSION

To enable users write multiple lines of texts and delayed 
strokes in sentence-based input system, we proposed a robust 
dynamic text line segmentation method for real-time 
recognition of Chinese handwritten sentences. By using a 
statistical classifier (SVM) on geometric features 
characterizing the relationship between an ongoing stroke 
and the previous text lines, the ongoing stroke can be reliably 
classified into a previous line or decided to form a new line, 
even when there are delayed strokes. The dynamic text line 
segmentation algorithm has been demonstrated effective in 
experiments, and will be integrated into the real-time 
sentence recognition system. 
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