
Towards Improving the Accuracy of Telugu OCR Systems

P. Pavan Kumar∗, Chakravarthy Bhagvati, Atul Negi, Arun Agarwal, B. L. Deekshatulu

Dept. of Computer and Information Sciences
University of Hyderabad

Hyderabad 500 046, INDIA
Email:∗pavan.ppkumar@gmail.com, {chakcs, atulcs, aruncs, bldcs}@uohyd.ernet.in

Abstract—Design of a high accuracy OCR system is a
challenging task as the system performance is affected by
its component modules. Each module has its own impact on
the overall accuracy of the OCR system. An improvement
in a module reflects upon overall system performance. In
the present work, we have developed an OCR system for
Telugu. Our experiments on a corpus of about 1000 images
has shown that the system performance is degraded due to
broken characters caused by the binarization module as well
as due to improper character segmentation. Therefore, we
address the issues of handling broken characters and poor
segmentation. A novel approach which is based on feedback
from the distance measure used by the classifier is proposed
to handle broken characters. For character segmentation, our
proposed approach exploits the orthographic properties of
Telugu script. As a result, significant improvement is obtained
in the performance of the system. These algorithms are generic
and may be applicable to other Indian scripts, especially to
south Indian scripts. In our experiments, an end-to-end system
performance is evaluated which is not reported in the literature.

Keywords-OCR system; Telugu script; system performance;
Indian scripts

I. INTRODUCTION

Design of a high accuracy OCR system is a challenging
task as its performance is affected by various modules like
pre-processing (noise removal, binarization, skew detection
and correction etc), line, word and character segmentation,
feature extraction, classification etc. The accuracy of the
overall system depends on the accuracy of each module.
Errors in any module propagate to successive modules and
degrade the performance of the overall system. Therefore,
there is an imperative need to handle errors in any of the
modules to get a more robust OCR system. Most of these
errors occur if the input document image is degraded.

In the present work, we consider an OCR system that
is being developed for Telugu, as a part of consortium
project funded by Govt. of India. A corpus of around 1000
scanned document pages taken from different books along
with their annotated ground truth is created. Many of these
documents are degraded as they are taken from old books
which have bad print quality. In the literature other attempts
to Telugu OCR [1], [2] have neither shown results on such
large data nor reported end-to-end performance. From our

experimentation on the corpus, we observe that the overall
system performance is degraded by broken characters due
to binarization and also by improper character segmentation.
Here we describe a novel approach to handle broken char-
acters based on feedback from the distance measure used by
the classifier. Issues in character segmentation are tackled by
a novel approach that exploits the orthographic properties
of Telugu script. As a result, significant improvement is
obtained in the overall accuracy of the end-to-end system.

The paper is organized as follows. Telugu script and its
complexity is discussed in Section II. Section III gives an
overview of Telugu OCR system. In Section IV, proposed
algorithm for handling broken characters is discussed. In
Section V, proposed algorithm for character segmentation
is discussed. In Section VI, experimental results are shown
and the paper is concluded in Section VII.

II. TELUGU SCRIPT AND ITS COMPLEXITY

As discussed in [1], [3]–[5], Telugu is a phonetic lan-
guage, written from left to right with each character rep-
resenting a syllable. Telugu alphabet consists of 50 letters
with 14 vowels and 36 consonants. In addition, there are half
vowel symbols called vowel modifiers and half consonant
symbols called consonant modifiers. Telugu characters or
aksharas are formed by the conjunction of vowel and
consonant modifiers with basic consonants. These aksharas
form an extended symbol set which is not a part of the
alphabet (estimated to be around 10000 in the language)
and create serious difficulty in the design of recognition
process. An innovative and practical solution [3], [5], was
to employ connected components (ccs) as basic recognition
units, and to reduce the complexity to around 400 ccs.
Now it is to be noted that each akshara could have more
than one cc, and its ccs have to be arranged in order so
that the corresponding valid UNICODE representation is
produced. This ordering can be computed before or after
their recognition. Violation of the ordering for an akshara,
would result in an erroneous UNICODE representation.
Further, a valid UNICODE representation of an akshara
in Telugu is obtained by a composition of the UNICODE
representation of a base consonant, followed by the UNI-
CODE representation(s) of the consonant modifier(s) (if

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.185

910

Figure 1. Telugu UNICODE chart

any present) and finally followed by those of the vowel
modifier(s) (if any present). This complexity is illustrated
by some examples in Figure 2.

In Telugu, UNICODES [6] are defined only for the basic
alphabet and vowel modifiers as shown in Figure 1. From
the figure, we see that UNICODE codepoints 0C01 to
0C39 represent characters in the basic alphabet, while code-
points from 0C3E to 0C56 represent vowel modifiers, and
codepoints from 0C66 to 0C6F represent Telugu numerals.
Representation for consonant modifiers is arrived by com-
posing the UNICODE representations for special symbol
halant (UNICODE 0C4D), followed by the corresponding
consonant. UNICODE representations and ccs for various
Telugu aksharas are shown in Figure 2. First character is
a vowel represented by single UNICODE. Third one is a
consonant with two ccs, but has single UNICODE repre-
sentation. These two characters are a part of basic alphabet.
Second character is a combination of a base consonant and
a vowel modifier and has one cc. It is represented by two
UNICODES: base consonant and a vowel modifier. Fourth
character has a consonant modifier with base consonant
and it has two ccs, represented by three UNICODES: base
consonant and the last two for the consonant modifier (halant
followed by the corresponding consonant). Last example is
one of the most complex characters commonly found in Tel-
ugu. It has a base consonant with two consonant modifiers
and a vowel modifier and it has 4 ccs. As observed from
the figure, its UNICODE representation is also complex:
base consonant, halant, consonant corresponding to the first
consonant modifier, halant, consonant corresponding to the
second modifier and finally vowel modifier.

III. AN OVERVIEW OF TELUGU OCR SYSTEM

Telugu OCR system has various modules like pre-
processing (binarization, skew detection etc.), Line, word
and character segmentation, feature extraction, classification
and finally followed by post-processing. For binarization,
different methods are discussed in the survey paper [7] and
on our corpus, adaptive methods show good performance.
Line, word and character segmentation are performed based
on projection profiles [8]. For classification, sophisticated
classifiers like SVM, Neural Networks [9] etc, with different
features [3], [10]–[12] are used and it is observed from the

Figure 2. Some Telugu characters, their ccs and their UNICODE
representation

experimentation on our corpus that they do not perform well
due to large number of classes/broken characters. K-NN (K
Nearest Neighbour) classifier using distance measure based
on fringe map feature [3] is used as it has shown good
performance on our corpus.

Errors may occur at any of the above mentioned modules.
For example, binarization may result in noise, broken or
touching characters, line segmentation may combine two
adjacent lines or split a line into two or more lines and
word segmentation may combine two adjacent words or split
a word in two or more words. Character segmentation may
take ccs from or miss ccs to the surrounding characters or it
may violate the order of ccs and classifier may give wrong
labels to the ccs (recognition unit for Telugu). This error
analysis at each module helps to improve its performance
as well as the overall system performance.

As mentioned earlier, based on our experimentation on
the corpus, it is observed that the major degradation in the
system performance is due to the broken characters and
improper character segmentation. To handle these issues,
algorithms are proposed which are discussed in the following
sections.

IV. ALGORITHM FOR HANDLING BROKEN CHARACTERS

Broken characters [13]–[15] are generally formed due to
poor binarization or they can be introduced in the process
of scanning the document itself. Our proposed algorithm
handles broken characters obtained by any of the above
two processes. The algorithm operates at word level in the
sense, after word segmentation, for each word, ccs in a left
to right order are inspected and broken ccs are combined.
This combination is logical as it only modifies the minimum
bounding rectangle (MBR) such that it covers both the ccs.
For example, in Figure. 3(a), MBRs of two broken parts
are shown and after combining the two broken parts, the
expanded MBR which covers the two parts is shown in
Figure. 3(b).

This algorithm is based on the idea that the broken or
touching ccs exhibit higher values of the minimum distances
to the templates in the database with any distance measure

911

Figure 3. (a) MBRs of two broken parts shown in rectangles (b) Expanded
MBR after combining the two broken parts shown in (a).

used by the classifier. The reason is that broken or touching
ccs are not present in the template database and hence even
the minimum distance as given by the distance measure is
high. Higher value (greater than a threshold) of the minimum
distance for a cc means that cc is abnormal (touching or
broken) and vice-versa. Our approach uses this feedback
from the distance measure to detect whether a cc is abnormal
or not. For a given word, after its ccs are extracted, their
minimum distances to the template database are computed.
If an abnormal cc is detected, it is combined with its adjacent
cc and the combination is checked for abnormality by again
computing the minimum distance for the combination. If this
distance is reduced, that means the combination approaches
to a normal character and hence the combination is retained.
Otherwise, abnormality is increased by the combination and
the two ccs are not combined. Thus, once an abnormal
cc is detected, it is combined with its adjacent ccs until
the minimum distance is reduced. But sometimes even a
touching cc may combine with the adjacent normal cc
as the abnormality of the touching cc is reduced by the
combination. Therefore, abnormality of the adjacent cc also
has to be checked before combining a abnormal cc with it.

But to detect an abnormal cc, a threshold for the signif-
icant value of minimum distance has to be computed. In
our case, as the distance measure is based on fringe maps,
the threshold for the significant value of minimum fringe
distance is computed by taking a huge number of ccs (around
3×105) from our corpus and plotting their minimum fringe
distances. In that 1-D plot, a point (100) is found at which
90% of normal ccs fall below it and 90% of touching or
broken ccs fall above it. That value is taken as our threshold
(𝑉) and for a given cc, if its minimum fringe distance is
less than 100, it is normal. Otherwise, it is abnormal. The
detailed algorithm is discussed below:

1) For each word in the document image, repeat the steps
2 to 12.

2) Arrange the ccs of the given word in a left to right
order.

3) Combine ccs of the given word by performing the
following steps. Initial combination has only first cc
in the word.

4) Compute the fringe map of current combination of
ccs and its minimum fringe distance (MFD) to the
templates in the database.

5) Combine the current combination with the adjacent cc
(if present) and compute the fringe maps of the resul-
tant combination and the adjacent cc. Then find the
MFDs of the resultant combination and the adjacent
cc. If there is no adjacent cc, exit.

6) If MFD of the resultant combination is greater than
MFD of the current combination (abnormality in-
creased), do not combine adjacent cc with the current
combination.

7) Otherwise, If MFD of current combination is greater
than the threshold 𝑉 (current combination of ccs is
abnormal) and MFD of adjacent cc is less than 𝑉
(adjacent cc is normal), (that means, a touching cc may
be combined with a normal cc), then do not combine
adjacent cc with the current combination.

8) Otherwise, if MFD of current combination is less
than 𝑉 (current combination is normal) and MFD of
adjacent cc is less than 𝑉 (adjacent cc is normal),
then do not combine adjacent cc with the current
combination.

9) If all of the above cases fail, then combine the adjacent
cc with the current combination and the resultant
combination now becomes current combination (this
combination approaches to a normal shape) and go to
step 4.

In Figure 4, our algorithm is illustrated. In Figure 4(a),
it is observed that the first two ccs are broken parts of the
last one and have significant (greater than 100) minimum
fringe distance values 339.75 and 213.89 respectively and
the last one has the value 36.69, which is reduced due to
the combination and its shape approaches to a template
in the database. Similarly, in Figure 4(b) first three ccs
are broken and the last is the combined one and their
distances are 120.9, 310.16, 1747.75 and 30.04 respectively.
In Figure 4(c), two more examples of broken characters
that are combined by the proposed approach are shown.
In this figure, breaks are shown in rectangles. Finally, in
Figure 4(d), a touching character which has the minimum
fringe distance 555.84 is shown. Thus our algorithm is able
to detect touching characters, but we do not handle them
at this moment. The proposed method is applicable to other
scripts as it can be used for any recognition unit and distance
measure.

V. ALGORITHM FOR CHARACTER SEGMENTATION

Character segmentation is a process of segmenting char-
acters or aksharas from a word. Our algorithm for character
segmentation is based on the idea that ccs in an akshara
overlap horizontally with one another. This is not always
be the case due to the complexity of Telugu script and
hence a threshold which is based on font size is chosen
for the overlap. The ccs of a word are divided into blocks
where ccs in each block are horizontally overlapped as given
by the threshold. Each block is considered as an akshara.

912

Figure 4. Illustrating proposed algorithm for handling broken characters:
(a) First two ccs have minimum fringe distances 339.75 and 213.89
respectively and the last one as combined by the algorithm has the distance
36.69 (b) First three ccs are broken ccs and have distances 120.9, 310.16 and
1747.75 respectively and the last one as combined by the algorithm has the
distance 30.04. (c) Two other broken characters handled by the proposed
algorithm (breaks are shown in rectangles)(d) A touching character with
minimum fringe distance 555.84.

Figure 5. (a) A word image (b) aksharas (shown in rectangles) obtained
after character segmentation on the word image shown in (a).

For example, a word image is shown in Figure. 5(a) and
aksharas obtained after character segmentation on the word
image are shown in Figure. 5(b) where each rectangle gives
an akshara.

As discussed in Section II, ccs in each aksharas have
to be ordered (base followed by consonant modifiers and
then by vowel modifiers). This ordering can be done after
their recognition as their types (base, consonant or vowel
modifier) are also known after recognition. But a different
approach is followed in our OCR system. For each akshara,
the types of its ccs are found before recognition and based
on the types, the ccs are ordered in the required manner. The
advantage in finding the type of a cc before its recognition is
that it is then matched against only the templates of that type
in the template database. Thus it reduces recognition time
and the recognition becomes more accurate as the number
of templates to be matched are reduced. That means, our
approach also serves as a first level classifier as it performs
type recognition.

The type of cc in a given akshara is found based on
the properties of Telugu script. For any akshara, base cc
has more thickness and size than the ccs corresponding
to the consonant and the vowel modifiers and this nature
is exploited in our approach. A cc with maximum black
pixel count (an estimate of thickness and size) in the given
akshara is isolated and its type is assigned as base and
finding types of other ccs becomes trivial once the base cc
is known. If a cc is below (above) the base cc, its type is

Figure 6. (a) A complex Telugu akshara (b) Ordered ccs for the akshara
shown in (a).

assigned as consonant (vowel) modifier. The above process
is repeated for all the aksharas in the word. The algorithm
is discussed below:

1) Extract the ccs of a given word and compute their
MBRs. Let the left, top, right and bottom coordinates
of a MBR be denoted by xmin, ymin, xmax and ymax
respectively. Here, it is assumed that x-axis goes from
left to right and y-axis from top to bottom.

2) Sort the ccs of the word in the left to right order.
3) Find the black pixel count of each cc in the word.
4) Divide the ccs of the word into blocks (each block

comprises an akshara), such that ccs in each block
are horizontally overlapped by atleast 0.25× 𝑓 where
𝑓 is the estimated font size (computed in the line
segmentation module).

5) For each akshara obtained in the previous step:

a) Find a cc with the maximum black pixel count.
Assign its type as base (B).

b) For each other cc C in the akshara:

i) If ymax of C is less than ymax of B, then C
is of type vowel modifier. Otherwise, C is of
type consonant modifier.

6) For each akshara, order its ccs such that base cc
should appear first, later the ccs for the consonant
and vowel modifiers respectively. If there is more than
one consonant modifier, arrange them in the increasing
order of ymax.

In Figure 6(a), a complex Telugu akshara is shown and
the ordered ccs obtained by our algorithm are shown in
Figure 6(b). In Figure 6(b), first cc is base, next two are
consonant modifiers (shown in the internal box) and the last
one is vowel modifier (last one). The character shown in
Figure 6(a) and the last character shown in Figure 2 are
same. It can be observed from both the figures that the
order generated by our algorithm is same as the one required
for the UNICODE representation. The proposed method is
applicable to other scripts, especially to south Indian scripts
which are similar in nature to Telugu script.

VI. EXPERIMENTAL RESULTS

After incorporating the proposed algorithms into our OCR
system, the previous and the improved OCR systems are
compared on around 1000 images in the corpus. The error
rate for a given page is computed by using a traditional string
matching algorithm, Levenshtein edit distance [16]. Given
two strings, Levenshtein edit distance gives the minimum

913

number of substitution, insertion and deletion operations
needed to convert one string to the other. For a given page,
all the UNICODES of the ground truth text are taken into
one string and all the UNICODES of OCR text output into
the other string and Levenshtein edit distance is computed
between them. The ratio of this distance to the number of
UNICODES in the ground truth text gives the overall error
rate for the given page. The overall error rate as reported
by this distance can be considered as the accumulation of
error rates of the individual modules as errors at any module
ultimately reflect in the text output. As mentioned earlier,
no one in the literature has reported an end-to-end system
performance and also no one has used such a large corpus
having a lot of degraded documents. In [2], the authors have
reported only symbol recognition accuracies.

Table I
RANGES OF ERROR RATES AND THE NUMBER OF PAGES IN THAT RANGE

FOR BOTH THE PREVIOUS AND THE CURRENT OCR SYSTEMS

1Total Number of pages = 969
Error Rates (%) Previous system Current system

≤ 10 232 367
> 10 and ≤ 15 515 448
> 15 and ≤ 20 134 84

> 20 88 70

In Table I, the percentage error rates on 969 pages1are
shown. In that table, three columns show the ranges of error
rates and the number of pages falling in that range for both
the previous and the improved systems respectively. It is
observed from the table, the number of pages which have
error rates less than 10% is increased to 367 (from 232) for
the current system. For the current system, the number of
pages in the other ranges is reduced as most of these pages
move to the first range (less than 10%).

VII. CONCLUSION

In the present work, we propose algorithms for handling
broken characters and character segmentation. These algo-
rithms show significant improvement in the performance of
our Telugu OCR system. To handle broken characters, an
algorithm is proposed which detects abnormal ccs based on
feedback from the distance measure and combines them.
Our proposed algorithm for character segmentation also
determines the type of cc whether it is base, consonant or
vowel modifier and hence serves as a first level classifier.

The previous and the improved Telugu OCR systems are
compared on around 1000 scanned images taken from our
corpus. The results on them show that the error rates are
significantly reduced for the current system. The proposed
algorithms are also applicable to other Indian scripts, espe-
cially to south Indian scripts which are similar in nature to
Telugu script.

ACKNOWLEDGMENT

The authors thank the Ministry for Communications and
Information Technology (MCIT), New Delhi, Government
of India, for providing financial support under the grant No.
14(6)/2006-HCC(TDIL).

REFERENCES

[1] C. V. Lakshmi and C. Patvardhan, “An optical character
recognition system for printed Telugu text,” Pattern Analysis
and Applications, vol. 7, no. 2, pp. 190–204, 2004.

[2] C. V. Lakshmi, R. Jain, and C. Patvardhan, “OCR of printed
Telugu text with high recognition accuracies,” Computer
Vision, Graphics and Image Processing, pp. 786–795, 2006.

[3] A. Negi, C. Bhagvati, and B. Krishna, “An OCR system for
Telugu,” ICDAR’01, pp. 1110–1114, 2001.

[4] A. Negi, K. N. Murthy, and C. Bhagvati, “Foundational issues
of document engineering in indic scripts and a case study in
Telugu,” Vivek, vol. 16, no. 2, pp. 2–7, 2006.

[5] C. Bhagvati, T. Ravi, S. M. Kumar, and A. Negi, “On
developing high accuracy OCR systems for Telugu and other
indic scripts,” in Proceedings of the Language Engineering
Conference (LEC’02), pp 18-23, 2002.

[6] http://UNICODE.org/charts/PDF/U0C00.pdf.

[7] O. Trier and A. K. Jain, “Goal-directed evaluation of bina-
rization methods,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 17, no. 12, pp. 1191–1201, 1995.

[8] K. Y. Wong, R. G. Casey, and F. M. Wahl, “Document
analysis system,” IBM Journal of Res. Develop., vol. 26, no. 6,
pp. 647–656, 1982.

[9] V. Govindaraju and S. Srirangaraj, Guide to OCR for Indic
Scripts. Advances in Pattern Recognition, Springer, 2010.

[10] S. Rajasekaran and B. Deekshatulu, “Recognition of printed
Telugu characters,” Computer Graphics and Image Process-
ing, vol. 6, no. 4, pp. 335–360, 1977.

[11] A. K. Pujari, C. D. Naidu, M. S. Rao, and B. C. Jinaga,
“An intelligent character recognizer for Telugu scripts using
multiresolution analysis and associative memory,” Image and
Vision Computing, vol. 22, no. 14, pp. 1221–1227, 2004.

[12] G. Anuradha, “An investigation into Telugu font and character
recognition,” Ph.D. dissertation, University of Hyderabad,
Hyderabad, April 2009.

[13] V. Bansal and R. Sinha, “A complete OCR for printed Hindi
text in Devanagari script,” ICDAR’01, pp. 800–804, 2001.

[14] B. B. Chaudhuri and U. Pal, “An OCR system to read
two indian language scripts: Bangla and Devnagari (Hindi),”
ICDAR’97, vol. 2, pp. 1011–1015, 1997.

[15] C. V. Jawahar, M. N. S. S. K. P. Kumar, and S. S. R.
Kiran, “A bilingual OCR for Hindi-Telugu documents and
its applications,” ICDAR’03, vol. 1, pp. 408–412, 2003.

[16] D. O. Richard, H. E. Peter, and S. G. David, Pattern Classi-
fication(2nd Edition). pp 413-421: Wiley, 2000.

914

