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Abstract—Optical character recognition (OCR) technology
is widely used to convert scanned documents to text. However,
historical books still remain a challenge for state-of-the-art
OCR engines.

This work proposes a new approach to the OCR of large
bodies of text by creating an adaptive mechanism that adjusts
itself to each text being processed. This approach provides
significant improvements to the OCR results achieved.

Our approach uses a modified hierarchical optical flow
with a second-order regularization term to compare each new
character with the set of super-symbols (character templates)
by using its distance maps. The classification process is based
on a hybrid approach combining measures of geometrical
differences (spatial domain) and distortion gradients (feature
domain).

Keywords-hybrid classifier, character classification, adaptive
OCR, hierarchical optical flow, second order regularization
term, distance map.

I. INTRODUCTION

Optical character recognition (OCR) technology has been
used for decades to convert scanned images of documents
to indexable text. Although the accuracy of commercially
available OCR engines has improved to the point where
many regard the OCR problem as having been solved, in
practice, this statement is far from true. The mean word-level
error rates for most OCR engines range roughly from 1% to
10% (see [1]). This level of OCR accuracy is inadequate for
massive information retrieval applications. In addition, many
commercial OCR packages have been optimized for short
texts. As a result, these packages fail to utilize redundancies
inherent to large bodies of text.

Thus, there is a growing need for improved methods
for whole-book recognition. One of the popular approaches
in this field is adaptive OCR, when the system uses an
adaptive mechanism that attunes itself to the book text
being processed. Various techniques using the adaptivity
idea were developed in recent years. Khoubyari and Hull
[2] introduced the word image matching method, which
included the creation of improved word prototypes. Spitz
[3] presented an algorithm that involves the transformation
of text images into character shape codes. Xu and Nagy [4]
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proposed an automatic prototype extraction method, which
is based on comparing the bitmaps of pairs of words that
contain the same characters. Marinai et. al. [5] proposed an
adaptive word-level indexing of modern printed documents,
which are difficult to recognize using current OCR engines.
Xiu and Baird [6] use a character-image classifier and word-
occurrence probability model to describe an approach to
the unsupervised high-accuracy recognition of the textual
contents of an entire book. Kae and Learned-Miller [7]
propose iterative document-specific (contextual) modeling,
which first recognizes the least ambiguous characters and
then iteratively refines the model to recognize more difficult
characters. A document level word recognition technique is
presented by Rasagna et al. [8], which makes use of the
context of similar words to improve the word level recog-
nition accuracy. Eventually, Kluzner et. al. [9] introduced
the whole-book word-recognition-based adaptive OCR, as-
suming the existence of non-linear (elastic) distortions in the
appearing words.

In this paper, we describe our extension of the work by
Kluzner et. al. [9] which consists of a new adaptive OCR
mechanism for large bodies of text, adopting a character-
based clustering. Although the approach itself is general, we
focus our testing on the particularly challenging problem of
analyzing historical books containing a relatively large body
of homogenous material printed using rare old fonts. In this
context, the use of adaptation is especially effective.

However, because the basic recognition atom is smaller
in size, the basic techniques presented in [9] are not robust
enough. As a result, we strengthened our image processing
and classification tools. These modifications included:

∙ Modified hierarchical optical flow with newly devel-
oped second-order regularization term (used for
character comparisons)

∙ Use of distance maps of compared characters as an
entry data for optical flow

∙ Use of a hybrid classifier, combining both spatial and
feature domains

The structure of this paper is as follows. In Section II, we
describe our system architecture. Section III is devoted to
the training process, including the creation of super symbols.
The recognition engine, which is the core of our system, is
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presented in Section IV, which includes the description of
modified hierarchical optical flow process, comparison of
the distance maps, and the scoring methodology. Section V
presents our recognition results for the chosen benchmark.
Section VI is devoted to conclusions and future directions.

II. OCR SYSTEM ARCHITECTURE OVERVIEW

Although the book recognition process should start with
image enhancement and layout analysis, these stages are
beyond the scope of this paper. The Omni-font OCR ap-
proach (in our case ABBYY FineReader) is performed at
the beginning of the process. Our system first segments
the scanned (text) book pages into individual word images.
This stage is straightforward since inter-word separation is
relatively large in most texts. Our experiments use word
segmentation provided by the Omni-font OCR engine. Each
word is treated by our adaptive OCR engine, as described
in Section IV. The system automatically extracts high
confidence characters, clusters them, and performs auto-
training. During this process, the so-called super-symbols
are created. The correction of the OCR results, which may
be performed either manually or automatically, based on
existing dictionary or language model, is beyond the scope
of this paper.

The recognition process is next repeated using the adap-
tive approach. Each character is recognized by finding the
closest matching super-symbol template. Since this approach
does not assume any a priori font knowledge and pre-defined
feature set, it is particularly well-suited for historical fonts
printed in rare typefaces, and a set of invariant features is
not limited by size.

The flowchart of the process is presented in Figure 1.

Figure 1. Adaptive OCR system architecture

III. TRAINING PROCESS

The goal of the training process is to create a font resource
for the recognition engine. In our case, it incorporates
the ideal representation of each character/symbol (super-
symbol). The input data for the training process is high
confidence characters automatically extracted by the system

or received by manual correction of initial OCR results.
The training process clusters the above characters into
equivalence groups, using the cross-correlation technique as
a comparison tool. The high confidence characters clustered
in the same group are registered and averaged. The accepted
mean character image is called a super-symbol (see Figure 2)
for a given group of characters and is used by the recognition
engine during the comparison process. The accepted super-
symbols are close to ideal templates - particularly, they
have a high signal-to-noise ratio (SNR) due to the averaging
process (see, for example, three Old Gothic lowercase ”f”
characters and their super-symbol on Figure 2).

Figure 2. Three regular ”f” characters and their super-symbol (on the
right)

IV. RECOGNITION ENGINE

At the heart of our system lies the unique recognition
engine, receiving as input two gray-level images: the current
character being processed and the candidate super-symbol.
The engine consists of two modules: character warping
based on rigid and elastic image registration and character
recognition based on newly developed hybrid classifier.

Character warping module finds the appropriate trans-
formation between current character and candidate super-
symbol. This transformation consists of image translation
and elastic (non-rigid) registration, performed by modified
hierarchical optical flow (see subsection IV-A) on the basis
of images’ distance maps (see subsection IV-B).

The transformed version of the current character is su-
perimposed on the chosen super-symbol for classification
purposes. Character classification module (see subsection
IV-C) calculates the score, reflecting the similarity level
between the current character and candidate super-symbol.

A. Modified Hierarchical Optical Flow-Based Second Order
Regularization Term

Character warping module commences from the coarse
registration, compensating for the translation difference be-
tween the two images. The compensation result is verified
by means of cross-correlation metric. Stronger algorithms
are needed in order to compensate for possible non-linear
(elastic) differences. An attempt to solve the problem using
a classic optical flow was made in [9]. Both images were
treated as if they were obtained from a video sequence.
Based on this notion, the distortion between the two images
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was defined as an inter-frame motion. Accordingly, distor-
tion can be estimated using a modified version of the optical
flow technique.

The classical optical flow approach [10] is limited to dis-
tortions not exceeding four pixels. In order to overcome this
limitation we adopted a hierarchical (pyramidal) optical flow
technique (see [11]). The proposed scheme implements a
three-level, coarse-to-fine warping strategy, and the standard
down-sampling factor is 0.5 on each level.

Another crucial modification in our approach is an ad-
dition of a second order regularization term. Generally, the
goal of regularization is to penalize transformations that are
inconsistent with the known system properties. For example,
for the fluid flow estimation, one may wish to penalize
vorticity, divergence, or gradient of flow components (as
in [9]). In order to achieve this goal, one may add a
regularization term, consisting of the first order derivatives
of the vector field. However, since fluid flows are not devoid
of vortices, it may be desirable to limit their spatial variation.
This can be achieved by the second-order regularization
methods that are based on the second-order derivatives of
the field function. Given the flow 𝑓 , the regularization term
in this case can be expressed as ∇𝑑𝑖𝑣(𝑓) or ∇𝑐𝑢𝑟𝑙(𝑓) (see
[12]). To simplify the computational process, we use the
Laplacian of the optical flow components.

Given two similar images, the optical flow process cal-
culates a velocity vector (𝑢, 𝑣) for each pixel (𝑥, 𝑦) that
represents the speed and direction of the estimated pixel
movement. The variational formulation of this problem will
be as follows: given image 𝐼(𝑥(𝑡), 𝑦(𝑡), 𝑡), optimal values
𝑢, 𝑣 are obtained by minimizing the following functional:

𝐹 (𝑢, 𝑣) =

∫
Ω

(∇𝐼 ⋅ (𝑢, 𝑣) + 𝐼𝑡)2 𝑑𝑥𝑑𝑦

+ 𝛼

∫
Ω

(∣∇𝑢∣2 + ∣∇𝑣∣2) 𝑑𝑥𝑑𝑦

+ 𝛽

∫
Ω

(∣△𝑢∣2 + ∣△𝑣∣2) 𝑑𝑥𝑑𝑦, (1)

where Ω denotes the image domain. Assuming the desired
optical flow (𝑢, 𝑣) is a minimum of functional (1), we look
for a solution of the following system of Euler-Lagrange
equations{

𝐼𝑥 (∇𝐼 ⋅ (𝑢, 𝑣) + 𝐼𝑡)− 𝛼△𝑢+ 𝛽△(△𝑢) = 0
𝐼𝑦 (∇𝐼 ⋅ (𝑢, 𝑣) + 𝐼𝑡)− 𝛼△𝑣 + 𝛽△(△𝑣) = 0

,

with natural boundary conditions

∂𝑢

∂�⃗�

∣∣∣∣
∂Ω

= 0,
∂𝑣

∂�⃗�

∣∣∣∣
∂Ω

= 0

and
∂(△𝑢)
∂�⃗�

∣∣∣∣
∂Ω

= 0,
∂(△𝑣)
∂�⃗�

∣∣∣∣
∂Ω

= 0.

In our approach, we compute the optical flow for the
distance maps of the two images being compared (see Fig.
3, upper row). The reasoning of this step is explained in
subsection IV-B. We calculate the partial derivatives 𝐼𝑥, 𝐼𝑦
on the mean of the images’ distance maps, and derive the
time derivative 𝐼𝑡 from its usual definition - also using the
distance maps as a basis.

Figure 3. Gothic ”M” character distortion correction. Top row (from left to
right): ”M” super-symbol, original ”M” character and ”M” after correction;
bottom: difference maps before (on the left) and after correction

Figure 3 illustrates the computed optical flow application
to a character image (top row, in the middle), as compared to
the super-symbol image (top row, on the left). The resulting
modification of the character image (top row, on the right)
more closely resembles the shape of super-symbol image
than the shape of original character. However, the shape of
the modified character is usually not identical to the shape
of super-symbol. (See the difference map on the right in the
bottom row.)

We introduced a significant modification to the traditional
optical flow approach: in addition to modified regularization
term (second order was added), we originally calculated the
optical flow between two images basing on their distance
maps.

B. Distance Maps Usage Motivation

Kluzner et. al. [9] showed that optical flow, applied to
grey-level images, can be successfully used as an estimate
of the difference between two words. However, we found
that, for small templates (characters), this estimate is not
sufficiently robust. The algorithm suffers from background
abnormalities and irregularity of spatial gradients in the body
of the character. In order to overcome the above problems
for optical flow computation, we substituted the character
grey-level images with their distance maps (see [13]). Given
the binarized character image, its contour P was found, and
then the distance map for every pixel 𝑞 was calculated by
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the formulae
𝑇𝑃 (𝑞) = inf

𝑝∈𝑃
∥𝑝− 𝑞∥𝕃2 .

Substituting the image with its distance map changes the
gradients map to the constant one (the gradient magnitude in
the distance map is equal to 1 for all domain) and overcomes
the background influence and object abnormalities. Another
meaningful advantage of using the distance map is the
correct influence of the background on the optical flow
process, because it now has its own non-zero gradients (see
Figure 4).

Figure 4. From left to right: the Old Gothic ”s” character; its distance
map; gradient field of original image; gradient field of distance map

C. Hybrid Classifier

Once the distortion (motion) vector is estimated, we
need to translate it into a quantified difference measure.
Unfortunately, for many fonts, different characters may be
deceptively similar. As a result, the quantification of spatial
differences alone may lead to mistaken conclusions. In order
to mitigate this problem, we developed a unique hybrid
classifier. It combines measurements in both spatial and
feature domains: the similarity (computed for transformed
character images) and warping, respectively. To estimate
the difference between the current character and the super-
symbol, we denote

diff =
(
B ′

1

∩
B2

)∪(
B ′

2

∩
B1

)
,

where 𝐵1, 𝐵2 are the binary images of the current character
and the super-symbol, respectively, (⋅)′ indicates the dilation
operator with 3 × 3 element, and (⋅) indicates a negative
image. In this context, only large differences are considered.
Then, given 𝑓 = (𝑢, 𝑣) as the calculated optical flow
between the current character and the super-symbol, the
score for a given super-symbol is

1−
diff + 𝛾

∑
B2

div(f̃ )

𝐴𝑟𝑒𝑎(𝐵2)
. (2)

The rationale behind this method is that, for each pair
of character images, we wish to attain a high score when
the similarity is high (see Figure 3, bottom row) and the
divergence of optical flow is low (see Figure 5).

Figure 5. Divergence map between given ”f” and ”s” characters (top row
on the left and in the middle, respectively) as intensity image (top row on
the right), and its 3D presentation (bottom row)

The presence of divergence in the optical flow vector field
indicates that there are differences in the qualitative features
of the images, which goes beyond simple distortion. Figure
5 shows a comparison of the current Gothic font lowercase
character ”f” with the candidate super-symbol (Gothic font
lowercase character ”s”), including a qualitative difference
- the horizontal line crossing the ”f”. A two-dimensional
intensity graph of optical flow vector field divergence for this
pair of images is shown on the right. A three-dimensional
version of the above graph is presented at the bottom of
Figure 5. The blue spot on the two-dimensional graph (or
the local minimum of three-dimensional graph) indicates the
divergence values that noticeably deviate from zero. This
spot corresponds to the part of the horizontal line belonging
to character ”f”, which differentiates it from the character
”s”. The sum of divergences over the entire graph (see
(2)) indicates the non-trivial differences between these two
characters. Thus, assigning a score in accordance with the
above scoring formula to the pairing of current character
image and candidate super-symbol image yields a relatively
low score. A relatively low score indicates a poor match
between the images.

Using the above method we can measure the degree of
similarity between any pair of character images. This mea-
sure, in turn, divides all the characters into the corresponding
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equivalence sets. Indeed, each character is associated with
the highest score super-symbol (provided that the score ex-
ceeds a certain predetermined threshold). All the unassigned
characters are compared to each other and used to create
new classes. Each new class will yield a new super-symbol.
The process is then repeated in such a manner until all the
characters are assigned/recognized.

V. RESULTS

To verify the validity of the above approach, we applied
it to the benchmark of 101 scanned pages taken from an
18th century German book. We processed this benchmark
twice: first, using a leading commercial OCR engine; and
second, applying the adaptive OCR process described above.
We then compared the OCR results. For simplicity, we
performed all the measurements at the word level.

Naturally, any comparison of OCR engines must take into
account the number of recognized words and the number
of substitution errors. To facilitate the comparison process
we need a single measure combining both of these key
parameters. Accordingly, we used a Figure of Merit (FOM)
defined in [9]:

𝐹𝑂𝑀 = (𝑁𝑂𝑅+ 5 ∗𝑁𝑂𝐹 )/(𝑁𝑂𝑊 ),

where NOR is the number of rejects, NOF is the number of
substitution errors, and NOW is the number of words. FOM
serves as an indicator of the level of processing required
to correct the data manually. Hence, a lower value of FOM
indicates better performance of the recognition engine.

Our data set had 18,321 individual words. The recognition
results are summarized in Table I. Note that adaptivity
improved both the read rate and the error rate. Overall, the
FOM was reduced by about 48% indicating that the optional
manual correction effort is reduced by a factor of 2.

Table I
FOM RESULTS VERSUS BASELINE

Recogn. Rate Substitution Rate FOM
Commercial OCR 88.2% 2.1% 20.3%

Adaptive OCR 91.5% 0.5% 10.5%

VI. CONCLUSIONS AND FUTURE WORK

We presented a new algorithm for book-oriented adaptive
OCR that provides a significant enhancement with respect to
the conventional (non-adaptive) OCR engines. Our character
classification algorithm proved to be effective in recognizing
characters that were highly distorted either because of poor
quality of the printed material or because of scanning errors.

It should be noted that in our experiments we disregarded
the issue of the system time performance. Processing a 101
page benchmark on a state-of-the-art server took approxi-
mately one hour. However, we believe that system software
optimization would increase the system performance by an
order of magnitude or more.
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