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Abstract—We present a method for spotting a subgraph in
a graph repository. Subgraph spotting is a very interesting
research problem for various application domains where the
use of a relational data structure is mandatory. Our proposed
method accomplishes subgraph spotting through graph embed-
ding. We achieve automatic indexation of a graph repository
during off-line learning phase; where we (i) break the graphs
into 2-node subgraphs (a.k.a. cliques of order 2), which are
primitive building-blocks of a graph, (ii) embed the 2-node
subgraphs into feature vectors by employing our recently
proposed explicit graph embedding technique, (iii) cluster the
feature vectors in classes by employing a classic agglomerative
clustering technique, (iv) build an index for the graph reposi-
tory and (v) learn a Bayesian network classifier. The subgraph
spotting is achieved during the on-line querying phase; where
we (i) break the query graph into 2-node subgraphs, (ii) embed
them into feature vectors, (iii) employ the Bayesian network
classifier for classifying the query 2-node subgraphs and (iv)
retrieve the respective graphs by looking-up in the index of
the graph repository. The graphs containing all query 2-node
subgraphs form the set of result graphs for the query. Finally,
we employ the adjacency matrix of each result graph along-
with a score function, for spotting the query graph in it. The
proposed subgraph spotting method is equally applicable to
a wide range of domains; offering ease of query by example
(QBE) and granularity of focused retrieval. Experimental re-
sults are presented for graphs generated from two repositories
of electronic and architectural document images.

Keywords: subgraph spotting, explicit graph embedding,
graphics recognition, content spotting, focused retrieval.

I. INTRODUCTION AND RELATED WORKS

In last few years, content based information retrieval

(CBIR) systems for graphic document image repositories,

have emerged as an important application domain. This

has resulted into a gradual shift of attention from the hard

problems of symbol recognition and localization to the

relatively softer problem of content spotting (a.k.a. symbol

spotting). This is a direct outcome of growing size of

document image repositories and the increasing demand

from users to have an efficient browsing mechanism for

graphic content. The format of these documents restricts the

use of classical keyword based indexing mechanisms. Thus

a very interesting research problem is to investigate into

mechanisms of automatically indexing the content of graphic

document images; in order to offer to users the ease of query

by example (QBE) and granularity of focused retrieval.

Graphs have remained a very popular choice of graphics

recognition research community [1][2]. These data structures

do not suffer from fixed dimensionality. They are able to

represent both symbolic and numeric properties of an object

and can explicitly model the relations between parts of an

object. The graph based structural representations are very

convenient and powerful for relational information, and have

their application to a wide range of domains [3][4]. Keeping

in view the wide use of graph based representations for

graphic document images, the problem of content spotting

in graphic document image repositories, in fact, becomes the

problem of subgraph spotting.

Important recent works on content based graphic docu-

ment image retrieval include [5][6]. In this paper we take

forward our work on content spotting in graph represen-

tation of line-drawing graphic document images. In [7]

we proposed a content spotting system for line-drawing

graphic document images, for taking the keyword based

information retrieval for them one step forward to query by

example (QBE) and focused retrieval. The system comprises

of an off-line unsupervised learning phase and an on-

line content spotting phase. During off-line (unsupervised

learning) phase, first it vectorizes the document images and

represents them by attributed relational graphs. The work of

Qureshi et al. [8] has been employed for extracting the basic

building blocks of the graphic document images - Qureshi

et al. [8] have proposed a set of heuristics for localizing

symbols or (more generally speaking) the regions of interest

(ROIs) in attributed relational graph representation of line-

drawing architectural and electronic document images. The

ROIs are represented by subgraphs and are embedded into

numeric feature vectors which are termed as fuzzy structural

signatures. The fuzzy structural signatures are clustered into

classes using a classic agglomerative clustering technique.

The off-line learning phase completes by building an index

for the document image repository (i.e. document image

vs ROI vs cluster-id) and learning a Bayesian network

classifier. During the on-line content spotting phase the user

selects a region in a document image for posing a query

to the system. The on-line content spotting phase follows
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the same sequence of steps (as outlined for unsupervised

learning phase) for embedding the query image ROIs into

fuzzy structural signature and employs a Bayesian network

classifier for recognizing the ROIs in query image. It finally

retrieves the corresponding documents by looking-up in the

repository index and focuses on the query ROIs in the

retrieved document images.

Our novel proposed method generalizes our work in [7], to

subgraph spotting and facilitates the smooth deployment of

our system to a wide range of application domains. Instead

of relying on domain specific heuristics, we propose to use

a more primitive building-block for indexation of graph

repositories. A clique of order 2 or a 2-node subgraph is

actually the most primitive building-block of a graph. A

very important problem which arises as a consequence of

the choice of using such a basic subgraph is the extraction

of useful information for efficiently distinguishing two 2-

node subgraphs. We achieve this by employing our recently

proposed explicit graph embedding technique for embed-

ding attributed graphs into feature vectors [9]. Apart from

incorporating learning abilities in structural representations

(without requiring any labeled training set) and offering the

ease of query by example (QBE) and the granularity of

focused retrieval, our proposed method does not impose any

restriction on the size of query subgraph, as far as it contains

at-least one 2-node subgraph.

The proposed system offers an improvement to indexation

part of off-line unsupervised learning phase of [7] and gives

a very general solution for subgraph spotting; indeed equally

applicable to a whole range of domains where the use of

a relational data structure is mandatory. The fact that our

method does not require any labeled training set enables its

less expensive and fast deployment to various domains. A

second, worth highlighting, contribution of this work is the

score function for localizing a subgraph in a graph.

In Section II we introduce definitions and notations used

in this paper. Section III outlines our proposed method of

subgraph spotting. Experimental results for graphic docu-

ment image repositories are presented in Section IV and the

paper concludes in Section V with future directions of the

work.

II. DEFINITIONS AND NOTATIONS

Attributed Graph (AG): Let AV and AE denote the

domains of possible values for attributed vertices and edges.

These domains are assumed to include a special value that

represents a null value of a vertex or an edge. An attributed

graph AG over (AV , AE) is defined to be a four-tuple:

AG = (V,E, μV , μE)

where,

V is a set of vertices,

E ⊆ V × V is a set of edges,

μV : V −→ AV is function assigning attributes to vertices

and

μE : E −→ AE is a function assigning attributes to edges.

In an attributed graph AG: |V | is graph order, |E| is graph

size and degree of a node is number of edges connected to it.

Graph Embedding: Graph Embedding is a methodology

aimed at representing a whole graph (with attributes

attached to its nodes and edges) as a point in a suitable

vector space; preserving the similarity of the graphs i.e. the

more two graphs are considered similar, the closer should

be the corresponding points in the vector space.

Fuzzy Graph Embedding (FGE): Fuzzy Graph

Embedding (FGE) is a method of explicit graph embedding,

which we recently proposed in [9]. FGE exploits structural

and statistical significant details of an attributed graph for

embedding it into a feature vector. Its resulting feature

vector is termed as Fuzzy Structural Feature Vector (FSFV).

FSFV contains graph level features, node level features and

edge level features. The graph level features are graph order

and graph size. Node level features are fuzzy histogram of

node degree and fuzzy histogram of each distribution of the

values taken by node attributes. And the edge level features

are fuzzy histogram of each distribution of the values

taken by edge attributes. FGE employs fuzzy overlapping

trapezoidal intervals for minimizing the information loss

while mapping from continuous graph space to discrete

vector space. FGE permits graphs to benefit from state of

the art computational efficient, clustering and classification

tools, which originally is not possible in graph space.

III. PROPOSED METHOD

A. Automatic indexation of a graph repository

The automatic indexation of a graph repository is per-

formed during the off-line unsupervised learning phase of

our proposed method. This phase is outlined in Figure 1

and is detailed in succeeding paragraphs of this section.

The input to the (off-line unsupervised) learning phase is

a collection of graphs, given by:

{AG1, AG2, ..., AGk, ..., AGn}
where, the kth graph is:

AGk = (Vk, Ek, μ
Vk , μEk)

First of all, these graphs are preprocessed and new resem-

blance attributes are added to nodes and edges of the graphs.

These resemblance attributes incorporate information on the

homogeneity in neighborhood of nodes and edges.

For an edge, resemblance attributes provide a measure

of homogeneity between its nodes, and are computed from

respective node attributes in the graph. For an edge between

nodes, “1” and “2”, resemblance between a numeric attribute
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OUTPUT
1. Bayesian network classifier

2. Index for graph repository

INPUT
Graph repository

{AG1, AG2, ..., AGk, ..., AGn}

Preprocessing: Add resemblance attributes

Extract 2-node subgraphs

{ {subAG1}, {subAG2}, ..., {subAGk}, {subAGn} }

Explicit graph embedding of 2-node subgraphs

into feature vectors
{ {FSFV1}, {FSFV2}, ... {FSFVk}, ..., {FSFVn} }

Cluster feature vectors in classes
(i.e. assign cluster-id to each 2-node subgraph)

Learn a Bayesian network classifier

Prepare an index for graph repository

( AGk vs {subAGk} vs {cluster-ids for {subAGk}} )

Figure 1. Automatic indexation of a graph repository.

“a” is computed by Equation 1 and resemblance between a

symbolic attribute “b” is computed by Equation 2.

resemblance = min(|a1|, |a2|)/max(|a1|, |a2|) (1)

resemblance =

∣∣∣∣
1 b1 = b2
0 otherwise

∣∣∣∣ (2)

Similarly for a node, the resemblance attributes provide a

measure of homogeneity among its edges, and are computed

from the respective edge attributes in the graph. For a node,

a resemblance attribute is computed as the mean of the

resemblance between all pairs of its edges. The latter is

computed by Equation 1 for a numeric attribute “a” and

by Equation 2 for a symbolic attribute “b”.

The next step in (off-line unsupervised) learning phase of

our method, extracts 2-node subgraphs for all graphs in the

input collection of graphs. The set of 2-node subgraphs for

the input collection of graphs is given by:

{{subAG1}, {subAG2}, ..., {subAGk}, ..., {subAGn}}
where the set of subgraphs for kth input graph (AGk) is:

subAGk = {subAG1
k, subAG2

k, ..., subAGi
k}

and ith 2-node subgraph for kth input graph (AGk) is:

subAGi
k = (V i

k , E
i
k, μ

V i
k , μEi

k)

The next step in (off-line unsupervised) learning phase of our

method, embeds the set of 2-node subgraphs by equal size

feature vectors (the FSFVs). This is achieved by our explicit

graph embedding method (the FGE). The set of FSFVs for

the input collection of graphs is given by:

{{FSFV1}, {FSFV2}, ..., {FSFVk}, ..., {FSFVn}}
where, set of feature vectors for the 2-node subgraphs of

kth input graph (AGk) is:

FSFVk = {FSFV 1
k , FSFV 2

k , ..., FSFV i
k}

and the ith 2-node subgraph for kth input graph (AGk) is

embeded by feature vector FSFV i
k .

The feature vectors are clustered into classes by an

agglomerative (also called hierarchical) clustering method.

The clustering process starts by computing a pairwise city-

block-distance metric for the features in FSFV and builds a

linkage tree using the single link algorithm. We use a method

from [10] for getting an optimal cutoff for clusters - [10] is

based on an econometric approach to verify that variables

in multiple regression are linearly independent. The use of

agglomerative clustering approach keeps our method free of

any parameter for number of clusters. Each cluster represents

(a class of) similar 2-node subgraphs. The clustering step of

(off-line unsupervised) learning phase assigns class labels to

the FSFVs of 2-node subgraphs.

The labeled FSFVs are employed for learning a Bayesian

network classifier. This classifier serves as a computational

efficient tool for recognizing the 2-node subgraphs in query

subgraph, during the subgraph spotting phase of our method.

And finally, as a last step of (off-line unsupervised) learn-

ing phase of our method, an index is constructed for the

input collection of graphs which maps a graph to 2-node

subgraphs and the latter to cluster labels.

B. Subgraph spotting

The subgraph spotting is performed during on-line query-

ing phase. The input to (on-line) querying phase is a graph

comprising of at-least one 2-node subgraph. The input graph

(AGq) passes through the steps of preprocessing, extraction

of 2-node subgraphs ({subAGq}) and explicit graph embed-

ding of 2-node subgraphs into feature vectors ({FSFVq}),
as detailed in previous section for automatic indexation of

graph repository.

As next step of (on-line) querying phase, each query 2-

node subgraph ({subAGq}) is classified (as one of the 2-

node subgraph clusters) by employing the Bayesian network

classifier. For each query 2-node subgraph, the Bayesian net-

work classifier outputs a list of posterior-probabilities for all

clusters. The query 2-node subgraph is classified as highest

posterior-probability cluster. We look-up this cluster-id in

repository index for getting a list of possible combinations

of 2-node subgraphs corresponding to query. The graphs

containing all the query 2-node subgraphs ({subAGq}) form

the set of result graphs for the query graph AGq . This result

graph set is given by:

{AG1, AG2, ..., AGk, ..., AGm}
where, the kth result graph is:
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AGk = (Vk, Ek, μ
Vk , μEk)

For spotting the query graph AGq in a result graph AGk,

we employ the adjacency matrix of graph AGk along-with

a score function. For two nodes “i” and “j”, the possible

values in the adjacency matrix are summarized in Equation

3. The adjacency matrix of graph AGk has a value of “0” if

there is no edge between “i” and “j” in the original graph

AGk, a value of “1” if there is an edge between “i” and “j”

in the original graph AGk and a value of “2” if one of the

query 2-node subgraphs is classified (by Bayesian network)

as belonging to the cluster of this 2-node subgraph (which

is comprising of edge between “i” and “j”).

AGk(i, j) =

∣∣∣∣∣∣

0 no edge between i and j

1 an edge between i and j

2 2-node subgraph in result

∣∣∣∣∣∣
(3)

The query graph AGq is finally spotted in the re-

sult graph AGk, by looking up in the neighborhood of

each 2-node subgraph of AGk which is in the result i.e.

each “AGk(i, j) = 2” in the adjacency matrix of result

graph AGk. We explore “w” connected neighbors of each

“AGk(i, j) = 2”. The parameter “w” is proportional to the

graph order of query graph AGq (|Vq|). We compute a score

for each “AGk(i, j) = 2” using Equation 4. The computed

score of “AGk(i, j) = 2” also gives a confidence value for

subgraph spotting of query graph AGq in result graph AGk.

score =
2∑

z=0

(z × |z|
w

) (4)

In Equation 4,

z is a value in the adjacency matrix (either 0,1 or 2),

|z| is number of times the value z occurs in neighborhood

and

w is number of connected neighbors that are looked-up.

IV. EXPERIMENTATION

We have evaluated the performance measures for our pro-

posed method on two graphic document image repositories.

The line-drawing graphic document images and the queries

are generated synthetically along with the ground truth

[11]. The document images are represented by attributed

graphs using the method from Qureshi et al. [12]. The

topological and geometric details about the structure of the

line-drawing graphic content are extracted and represented

by an attributed graph. In first step, the graphic content

is vectorized and is represented by a set of primitives

(vectors and quadrilateral). In next step, these primitives are

represented by nodes and topological relations between them

by edges in an attributed graph.

The synthetically generated query images for our experi-

mentation, actually simulate the contextual noise. This type

of noise occurs in cropped regions of graphic document

Figure 2. Precision and recall plot.

images. An interesting application of the latter is selecting

a region in a graphic document image (on a modern tactile

interface), for querying a graphic document CBIR system.

Table I
DATASET DETAILS.

Image Attributed graph

Electronic diagrams

Backgrounds 8 Avg. order 212
Models 21 Avg. size 363
Symbols 9600 Node attribs. 4

Edge attribs. 3
Documents 800 Graphs 800
Queries 1000 Graphs 1000

Architectural diagrams

Backgrounds 2 Avg. order 359
Models 16 Avg. size 733
Symbols 4216 Node attribs. 4

Edge attribs. 3
Documents 200 Graphs 200
Queries 1000 Graphs 1000

The details on the document images and graph datasets

are summarized in Table I. During the automatic indexation

phase of graph repositories, a total of 516714 2-node sub-

graphs were extracted for electronic diagrams and 305824
2-node subgraphs for architectural diagrams. These 2-node

subgraphs were clustered into 455 classes for electronic

diagrams and 211 classes for architectural diagrams. The

indexation of electronic diagrams graph repository took ~17
hours on a standard PC with 2GB of RAM and the subgraph

spotting was performed in real-time.

For evaluating the performance of our method, we have

employed the standard precision and recall measure. Fig-

ure 2 presents the precision and recall plot for the cen-

tral tendency of the queries of respective attributed graph

datasets. A snapshot of the retrieved results for a query

image is presented in Figure 3. The experimental results

clearly demonstrate that the proposed method is capable of

maintaining a high precision rate for sufficiently large graph

repositories.

V. CONCLUSION

We have presented a method of spotting a subgraph in

a graph repository. Subgraph spotting is a very interesting

research problem for various application domains. This is a
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(a) Query image.

(b) Documents retrieved.

Figure 3. A snapshot of retrieved results for a query image.

continuation of our work on content spotting in graph rep-

resentation of line-drawing graphic document images. Our

proposed method accomplishes subgraph spotting through

graph embedding. We achieve automatic indexation of a

graph repository during off-line learning phase and achieve

the subgraph spotting during on-line querying phase.

Our proposed method does not rely on any domain spe-

cific details and offers a very general solution to the problem

of subgraph spotting; indeed equally applicable to a wide

range of application domains where the use of graph as a

data structure is mandatory. Apart from incorporating learn-

ing abilities in structural representations (without requiring

any labeled training set) and offering the ease of query by

example (QBE) and the granularity of focused retrieval, the

system does not impose any strict restrictions on the size

of query subgraph. Our novel proposed system offers an

improvement to the indexation part of off-line unsupervised

learning phase of our previous work and gives a very general

solution for subgraph spotting. The fact that our system does

not require any labeled training-set enables its less expensive

and fast deployment to a wide range of application domains.

The experimental results for graphic document image

repositories are very encouraging and offer an improvement

to our previous system. In future we plan to evaluate the

performance of our method on real datasets for important

application domains of pattern recognition and to take this

work forward by exploring cliques of higher order (≥ 3) for

building a multi-resolution index of a graph repository.
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