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 Abstract— In offline handwritten character recognition, the 
nonlinear normalization (NLN) method based on line density 
equalization has been proven very effective. This paper 
shows the effects on online handwritten Japanese character 
recognition. We apply the nonlinear normalization based on 
line density equalization to online character patterns. Since 
the curve-fitting-based normalization methods and their 
pseudo 2D extensions yields superior performance on offline 
patterns, we also combine these methods with the way using 
line density projection. We have compared the methods 
using trajectory-based projection with ones using line 
density projection. As a result, line density-based methods 
yield superior accuracy and a competitive time-complexity.  

Keywords-Online character recognition; Line Density 
Equalization; Nonlinear Normalization; Pseudo 2D 
normalization. 

I.  INTRODUCTION 

Online handwriting recognition generally exploits the 
time sequence information so that it is more robust against 
stroke catenation, running strokes and deforming of 
character patterns, but it is sensitive to stroke order 
variations. As it is well-known, the strengths of offline 
method can compensate for online method’s weakness. 
Offline method-combined online recognition has been 
proposed and shows higher recognition accuracies [1][2]. 
Since the research of applying offline method to online 
character recognition has started. 

As discussed, for offline Japanese/Chinese handwritten 
characters that contain multiples strokes, nonlinear 
normalization based on the line density equalization has 
been invented [3][4] and many variations have been 
proposed.  The method by Tsukumo et al. [3] is still 
widely adopted. Despite its popularity, however, the 
normalized shapes are not smooth due to the local 
transformation nature. On the contrary, curve-fitting-based 
global transformation methods estimate a few parameters 
efficiently from global shape features and generate 
smoothly normalized shapes. Some recent new methods 
such as Moment (MN), Bi-moment (BMN), centroid-
boundary alignment (CBA) and its modification (MCBA) 
also perform comparably with an impoved version of 
Tsukumo et al.’s method (NLN-T) [5-8].  

Most of nonlinear normalization in offline recognition 
is applied on a 2D image. Recently, Liu et al. has 
successfully applied curve-fitting-based nonlinear 
normalization and pseudo 2D normalization to online 
character recognition and obtained high performance [9]. 
However, line density-based normalization which is 
evidently superior to others in offline character recognition 
has not been tried yet. Therefore, we propose using line 
density in nonlinear normalization strategy. In all methods, 
we convert the online pattern to 2D image, and calculate 
projections of line density. While NLN-T directly uses line 
density projections for coordinate mapping, others use 
them to calculate centroid and moments.  

This paper describes an effectiveness of nonlinear 
normalization using line density in online Japanese 
character recognition. To evaluate the recognition 
performance of the normalization methods, we use 
directional feature extraction and the modified quadratic 
discriminant function for classification� [10]. We have 
experimented on the TUAT HANDS online handwritten 
Japanese character databases Kuchibue and Nakayosi [11] 
and confirmed that the accuracies of proposed methods are 
comparable to or higher than that of existing methods.  

The remainder of this paper is organized as follows. 
Section 2 presents an overview of the recognition system. 
Section 3 describes the line density-based nonlinear 
normalization, curve-fitting-based nonlinear normalization, 
pseudo 2D normalization methods. Section 4 describes 
direction feature extraction. Section 5 presents the results 
of experiments and finally, Section 6 draws conclusion. 

II. SYSTEM OVERVIEW 

The recognition system for online handwritten 
Japanese characters consists of three main steps: 1) pre-
processing, 2) feature extraction and 3) classification 

An input pattern trajectory consists of a sequence of 
strokes, and each stroke consists of coordinates of sampled 
pen-points from pen-down to pen-up. The stroke 
smoothing is operated in the pre-processing step. 
Smoothing can reduce stroke shape variation in a small 
local region. In each stroke, except the start point and end 
point, we replace the coordinate of every point by the 
weighted average of that of its two neighbors and itself. 
Next, in normalization, the shape of a smoothed pattern is 
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transformed to a size-standardized and shape-regulated 
pattern. In this step, we apply line density-based 
normalization [3], curve-fitting-based normalization [5][6], 
and pseudo 2D normalization [7]. 

In feature extraction, the direction of normalized line 
segment and normalized gradient vector are used to extract 
8-directional features in each of 8 x 8 regions, thus 
obtaining 512 features. Then, we apply the Fisher linear 
discriminant analysis (FLDA) [12] to reduce 512 
dimensions to 160. 

At last, we apply a two-stage classifier composed of 
coarse and fine classifiers. In coarse classification, we 
select 100 candidate classes according to Euclidean 
distance to class means. And in fine classification, the 
modified quadratic discriminant function (MQDF2) of 
Kimura et al. [10] is used to select the output class from 
candidate classes. 

III. NONLINEAR NORMALIZATION 

Normalization is used to reduce the shape variation 
between patterns of the same class. An original pattern 

 with width  and height  is transformed to a 
normalized pattern  of standard size with width 

 and height . While in offline,  is a pixel 
sampled from a continuous image plane, in online, this is a 
sampled pen-point of a line segment. Normalization is 
implemented by coordinate mapping of pixels or pen-
points as follows:  

 

                                                           (1) 

 
The shape of a normalized pattern depends on the 

coordinate mapping function  and . These 
functions are various in different methods. 

A. Line Density-based Normalization 

Linear normalization is not sufficient to absorb the 
shape variation of divergent writing styles. Consider that 
in Japanese/Chinese characters, the shape variation mainly 
lies in the ununiformity of stroke distribution; Tsukumo et 
al. [3] and Yamada et al. [4] proposed the nonlinear 
normalization using line density equalization. The NLN is 
implemented by mapping: 

 

                           (2) 

 
where  and  are the normalized line density 
histograms of x axis and y axis, respectively, which are 
obtained by normalizing the projections of local line 
densities as follows: 
 

                                    (3) 

 

where  and  are line density projections onto x 
axis and y axis, respectively; and  and   are 
local line density functions. Tsukumo et al., take these 
functions as the reciprocal of horizontal/vertical run-length 
in background area, or a small constant in stroke area. On 
the other hand, Yamada et al., consider both background 
run-length and stroke run-length, and unify them to render 

= . The two methods give comparable 
performance but the method of Tsukumo et al. is more 
efficient in computation [13]. Moreover, an improved 
version of Tsukumo’s method, which adjusts the density 
functions of marginal and stroke areas empirically, 
achieves better performance [7]. We use this version for 
calculating line density projection and compare with other 
methods. 

For online patterns, to apply this method we convert an 
online pattern to a 2D image. We imagine that the 
character trajectory is laid on a grid. Each stroke (pen 
movement) of the trajectory is viewed as a sequence of 
line segments in an imaginary image (each pixel 
corresponding to a unit cell in the grid), each defined by a 
pair of consecutive sampled points. On the grid, each pixel 
crossed by a line segment is assigned black as Fig. 1.  

 
     
     
     
     
     
     

 
Figure 1. Pixels of a line segment 

 

B. Curve-fitting-based Normalization 

Three curve-fitting-based normalization methods using 
quadratic coordinate functions, called bi-moment 
normalization (BMN) [5], centroid-boundary alignment 
(CBA), modified CBA (MCBA), and line density 
projection fitting (LDPF) [6], have been proposed for 
offline character recognition. BMN, CBA and MCBA, 
except LDPF, are successfully applied to online character 
recognition [9]. The projections  and  are 
calculated directly from trajectory without converting to a 
2D image. From projections the centroid and moment can 
be computed and used in these methods.  

The BMN method is an extension of the moment 
normalization (MN) method [14], which aligns the 
centroid of an input pattern  to the center of a 
normalized pattern  and rescales 
the pattern according to second order moments. In BMN, 
the rescaled width and height are treated asymmetric with 
respect to the centroid. Then the reset bounds and the 
centroid are used to estimate the quadratic functions for 
coordinate mapping. 

The quadratic functions are also used to align the 
boundaries and centroid  and  with 

 in the CBA method. While in the MCBA method, 
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to adjust the stroke density in the central area, a sine 
function is combined with the quadratic function. The 
MCBA method can be also used to fit the projections of 
line densities of NLN, called LDPF. 

For these curve-fitting-based normalization methods, 
only MCBA has been combined with the density-based 
normalization (called as LDPF) [6]. In this paper, we 
combine several curve-fitting-based normalization 
methods with the density-based normalization and 
investigate the combination effects. 

C. Pseudo 2D Normalization 

In pseudo 2D normalization [7], the coordinate 
mapping functions,  and , are obtained by 
combining three 1D coordinate functions  with their 
weight functions , i=1,2,3. These functions are 
computed from three soft strips of the original pattern. The 
1D functions are combined by: 

 

  

(4) 
Similarly, the 2D function  can be obtained. 

Corresponding to the method of calculating 1D 
coordinate mapping functions, we can extend to pseudo 
2D. As a result, we have 5 pseudo 2D normalization 
methods: P2DMN, P2DBMN, P2DCBA, P2DMCBA, and 
P2DLDPF. The weight in (9) is set to 0.75. Note that 
Liu et al. did not extend the CBA method to pseudo 2D, 
and instead referred to the pseudo 2D extension of MCBA 
as P2DCBA [7][8].  

Except for LDPF and P2DLDPF, because other 
methods of curve-fitting-based normalization and pseudo 
2D normalization use projections calculated directly from 
trajectories for an online character pattern or an image for 
offline character pattern, we call those trajectory-based 
projection methods for online patterns. Fig. 2 shows 4 
online character patterns and their 8 normalized patterns 
by these methods. 

 

 
 
Figure 2. Original pattern and normalized patterns by methods using 
trajectory-based projection. 
 

D. Line Density-combined Normalization 

The basic concept of this method is to use line density 
projection in every method. MN, BMN, CBA, MCBA are 
using pixel intensity (for offline image) or histogram of 
trajectory (for online pattern),  and . Now we try 

to use line density projection  and  to calculate 
a centroid and moments in these methods. We call them 
line density-based projection methods. Obviously, 
computational costs of such methods are more expensive 
than original ones.  

Then we can call LDPF is the extension of MCBA in 
this way. Extensions of others are called MN-T, BMN-T, 
CBA-T, and P2DMN-T, P2DBMN-T, P2DCBA-T for 
pseudo 2D methods, respectively. We also implement 
NLN-T as a 1D method and line density projection 
interpolation (LDPI) as a pseudo 2D method that combines 
NLN-T with the pseudo 2D normalization [7]. The 
normalized patterns by them are shown in Fig. 3. 

 

 
 
Figure 3. Original pattern and normalized patterns by methods using line 
density-based projection. 

IV. DIRECTION FEATURE EXTRACTION 

Direction feature extraction is accomplished in three 
steps: directional decomposition, blurring and sampling. 
The local stroke segments are assigned to a number of 
direction planes, then each plane is blurred (low-pass 
filtered) and the sampled values are taken as feature values. 

A. Direction decomposition 

After normalization, we get a normalized pattern. We 
implement two methods to extract feature form this one. 
While gradient feature extraction (GRD-FE) needs a 
pattern to be converted to a 2D image, directional line 
segment feature extraction (SEG-FE) can directly extract 
feature from pattern trajectory.  

We use eight direction planes, corresponding to eight 
chain code directions as shown (Fig. 4(a)). Following the 
method by Kawamura et al. [15], each line segment or 
gradient vector is decomposed into two components in two 
neighboring chain code directions (Fig. 4(b)).  

 
 

Figure 4. Eight chain code directions (a) and directional decomposition 
of a line segment/gradient vector 

 
For SEG-FE, each line segment in the normalized 

pattern trajectory  is decomposed 
into two components as in Fig. 2(b), with lengths  
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(direction 1) and  (direction 2). The corresponding two 
direction planes are given weights  and 

 (  is the length of ). Then in the plane of 
direction 1 and 2, each pixel overlapping with  is given a 
value of overlapping length times  and , 
respectively. 

In GRD-FE, by using the Sobel operator, the gradient 
vector, computed on the normalized image converted from 
normalized pattern, is decomposed into components in 
eight chain code directions. The gradient vector 

 at a pixel  in a normalized image is 
computed by: 

 
 
 
 
 
(5) 

The gradient strength and direction can be computed 
from the vector . The length of the vector on each 
component as shown in Fig. 2(b) is assigned to the 
corresponding direction plane. 

B. Blurring and sampling 

On directional decomposition, each direction plane is 
blurred using a low-pass Gaussian filter. The pixel values 
are sampled uniformly, and according to the Sampling 
Theorem, the variant parameter  is related to the 
sampling interval between blurring masks  [16]: 

 

                                                                           (6) 
 
We set the size of normalized plane and direction plane 

to 64x64 pixels, the sampling interval to 8. As a result, we 
obtain 64 feature values from each direction plan and 
totally 512 feature values. The extracted feature values are 
causal variables. Power transformation is used to improve 
the Gaussianity of feature distribution [12]. We set the 
power of variable transformation to 0.5. 

V. PERFORMANCE EVALUATION 

To compare the performance between methods on 
normalization and feature extraction, we have 
experimented on the TUAT HANDS - online Japanese 
character databases, Kuchibue and Nakayosi [11]. As 
many previous work did [9][17][18], we also 
experimented with 3,345 classes of JIS level-1 Kanji 
character (2965 classes) and kana, alpha numerals, 
symbols and so on (380 classes). We used the samples of 
Nakayosi for training and Kuchibue for testing.  In 
Nakayosi, there are 9,309 patterns for the JIS level-1 Kanji 
character and symbols, while in Kuchibue, the number is 
11,951. Similarly, we also experimented with 2,965 JIS 
level-1 Kanji characters only.  

For reducing the classifier complexity and improving 
classification accuracy, the 512-dimension of the feature 
vector is transformed to 160-dimension by Fisher linear 
discriminant analysis (FLDA) [12]. 

For classification, we use two classifiers: the Euclidean 
distant to the class mean (minimum distance classifier) and 
the MQDF2 [10]. On the reduced vector, we select 100 
candidate classes according to the Euclidean distance. The 
MQDF2 is then computed on the candidate classes only. 
We use 50 principal eigenvectors for each class, make the 
minor eigenvalue class-independent and optimize it via 
holdout cross-validation on the training dataset. 

The experiment compares the accuracy and time 
complexity of the above methods. 

A. Accuracies 

The normalization and feature extraction methods are 
evaluated on 3,345 classes of Kanji, kana, alpha numerals,  
symbols and so on, and also on 2,965 classes of Kanji only. 
The normalization methods are divided into two groups, 
the one using trajectory-based projection and the other 
using line density-based projection. We evaluate these in 
two methods of feature extraction, SEG-FE and GRD-FE. 
TABLE I shows the test accuracies for 3,345 classes and 
TABLE II shows the results for 2,965 classes. 

TABLE I.  ACCURACIES (%) FOR 3,345-CLASS KANJI AND SYMBOL 

3,345 classes SEG-FE GRD-FE 
1D P2D  1D P2D 1D P2D 

Trajectory-based Projection 
MN P2DMN 91.01 91.07 90.93 90.77 
BMN  P2DBMN 91.02 91.02 90.80 90.72 
CBA P2DCBA 91.08 91.49 91.15 91.45 
MCBA  P2DMCBA 91.34 91.65 91.47 91.55 

Line Density-based Projection 
MN-T P2DMN-T 91.54  90.99  91.43  90.77  
BMN-T P2DBMN-T 91.34  91.01  91.12  90.71  
CBA-T P2DCBA-T 91.10  91.49  91.19  91.46  
LDPF P2DLDPF 91.48  91.67  91.65  91.60  
NLN-T  LDPI 91.59  92.08  91.82  92.10  

TABLE II.  ACCURACIES (%) FOR 2,965-CLASS KANJI 

2,965 classes SEG-FE GRD-FE 
1D P2D 1D P2D 1D P2D 

Trajectory-based Projection 
MN P2DMN 97.66  98.38  97.66  97.92  
BMN  P2DBMN 97.70  98.40  96.97  97.97  
CBA P2DCBA 97.97  98.10  97.34  97.52  
MCBA  P2DMCBA 98.16  98.33  97.57  97.85  

Line Density-based Projection 
MN-T P2DMN-T 98.21  98.39  97.68  97.92  
BMN-T P2DBMN-T 98.21  98.41  97.70  97.95  
CBA-T P2DCBA-T 97.97  98.09  97.33  97.51  
LDPF P2DLDPF 98.15  98.34  97.61  97.84  
NLN-T  LDPI 98.26  98.45  97.72  98.00  

 
From the results, we can firstly see that for most of the 

methods, using line density-based projection has higher 
accuracy than using trajectory-based projection. Second, 
In our implementation, while the accuracies of CBA and 
MCBA are higher than MN and BMN in trajectory-based 
projection, the opposite results are obtained in line density-
based projection. Third, NLN-T and LDPI are the best in 
all cases. Forth, about the feature extraction, SEG-FE is 
effective with Kanji, but it is not so effective as GRD-FE 
in whole. 
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B. Time complexity 

Although the effect of line density is undoubted, it is 
more time-consuming. To evaluate the computational 
complexity of normalization methods, we profile the 
processing time in two sub-tasks of preprocessing: 
smoothing and normalization. From an input pattern, the 
CPU time is counted until the normalized coordinates are 
computed. It does not cover either the normalized image 
generation (for GRD-FE) or the feature extraction 
procedure. We implemented the experiments on Intel® 
Core™2 Quad CPU Q9400 2.66GHz. The averaged CPU 
time is calculated over the samples from 3,345 classes of 
both Kuchibue and Nakayosi (1,517,367 + 1,434,120 = 
2,951,487 samples).  

TABLE III.  AVERAGE CPU TIME (MS) FOR NORMALIZATIONS 

Trajectory-based 
Projection 

Line Density-based  
Projection 

�  1D P2D �  1D P2D 
 MN 0.007 0.020  MN-T 0.038 0.052 
BMN 0.008 0.024  BMN-T 0.041 0.052 
 CBA 0.008 0.022  CBA-T 0.038 0.052 
 MCBA 0.017 0.038  LDPF 0.048 0.069 
�     NLN-T 0.039 0.047 

 
The CPU time is shown in TABLE III.  Normalization 

methods using line density computation are more 
expensive than those using trajectory-based computation. 
MN, BMN, CBA seem to have the same speed. Especially, 
the LDPI method which yields the best accuracy is as 
expensive as these methods in line density-based 
projection group. Moreover, P2DMCBA which has the 
best rate among the trajectory-based projection group has 
the same time cost with NLN-T. Overall, we can use 
NLN-T or even LDPI in place of P2DMCBA and others in 
the line density-based projection group.  

VI. CONCLUSION 

We implemented normalization methods with or 
without using line density projection to evaluate the effect 
of line density to online character recognition. The 
comparison of normalization methods shows that NLN-T 
and most of curve-fitting-based methods which use line 
density projection have higher accuracies than ones which 
simply use trajectory-based projection. Not only for offline 
character patterns but also for online character patterns, the 
line density-based methods yield high accuracy. Although 
they are more time consuming, the computational cost is 
acceptable due to improved performance. In this work, 
with line density projection, we reach a superior rate of 
over 92.10%. We intend to modify the feature extraction 
for better performance in future work. 
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