
On-line Signature Verification Using Segment-to-segment Graph Matching

Kaiyue Wang, Yunhong Wang and Zhaoxiang Zhang
School of Computer Science and Engineering, Beihang University

Beijing, China
wangkaiyue@ss.buaa.edu.cn, yhwang@buaa.edu.cn, zxzhang@buaa.edu.cn

Abstract—This paper proposes a novel approach of on-line
signature verification. Firstly, on-line signatures are partitioned
into a series of segments, which are then represented by
graphs. Four segmentation methods are taken into account.
Secondly, graph matching techniques are adopted to compute
edit distance between corresponding graphs, which measures
the similarity of them. Finally, having been able to compare two
signatures, limited genuine signatures are used to train user-
dependent classifiers for each user. Experiments are conducted
to validate the effectiveness of the proposed method and
promising results are achieved.

Keywords-on-line signature, signature verification, signature
segmentation, graph matching, biometrics

I. INTRODUCTION

Among all means of identity verification nowadays, sig-
nature verification is one of the most accepted methods. The
formation influenced by physical condition, family environ-
ment, education and many other factors, signatures differ
from person to person. Thus as such a unique behavioral
biometric feature which is difficult to imitate, it is suitable
for identity verification. This paper concerns on-line signa-
tures, which are collected by devices such as digital tablets
or electronic pens, instead of traditional signatures signed
on paper. Each sample of on-line signature is composed
of a series of points, each of which contains features like
pen position, pen-tip pressure, moving direction, and speed.
Since these features are accurately recorded by acquisition
devices, on-line signatures are assumed to be more reliable
for identity verification than traditional signatures.

Quite an amount of pattern recognition methods have
already been applied to on-line signature verification, such
as Dynamic Time Warping (DTW), Hidden Markov Mod-
el (HMM), and Support Vector Machine (SVM), etc [1].
Some methods involving graph representation of signature
and graph matching had been applied to off-line signature
verification, while there had been seldom researches on on-
line signature verification using graph matching as far as
we know. In this paper, we propose a novel approach of
on-line signature verification using graph representation and
segment-to-segment graph matching. Signatures are first par-
titioned into smaller segments, each of which is represented
by a graph, then corresponding segments are compared using
graph matching methods.

II. GRAPH REPRESENTATION AND MATCHING

A. Graph Representation of On-line Signatures

A graph, composed of nodes and edges, is usually denoted
by G = (V,E), where V = {v1, v2, ..., vM} is the set of
nodes and E = {eij = (vi, vj)} ⊆ V × V the set of edges.
For a weighted graph, there exists a weighting function w(·)
that gives each node and edge a real nonnegative value.
In the case of undirected graph, which is concerned in
our work, w(eij) = w(eji). A n-node graph is usually
represented by a n × n adjacency matrix AG = {aij}, aij
defined as

aij =

{
w(eij) = w(vi, vj), i 6= j

w(vi), i = j
(1)

Obviously, AG is symmetric if the graph is undirected.
Suppose S is an on-line signature or a segment of a

signature, containing N sample points. To represent S with
graph, firstly, sample points are regarded as nodes, i.e.
S = {v1, v2, ..., vN}. While each sample point may contain
a variety of directly extracted features, e.g. pen position
and pressure, depending on the data acquisition device, we
only take into account three most commonly used features:
x-position, y-position and pressure at sample points. As
a result, xi, yi and pi respectively denote x-position, y-
position and pressure at vi.

Based on xi, yi and pi, more complicated features are
computed and regarded as the weights of nodes or edges.
According to the definition of node and edge, weights of
nodes should be local features that describe properties of
sample points, while weights of edges describe relationship
between nodes.

In our work, two sets of features are respectively chosen
to generate two types of graph for each segment. Type I
involves pressure and angle:

AG1 =


p(v1) a(v1, v2) · · · a(v1, vN )

a(v2, v1) p(v2) a(v2, vN )
...

. . .
...

a(vN , v1) a(vN , v2) · · · p(vN )

 (2)

where p(vi) = pi is the pressure at sample point vi and
a(vi, vj) = arctan[(yi−yj)/(xi−xj)] is the angle between
vector −−→vivj and x-axis. Type II involves curvature and

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.165

804

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.165

804



Figure 1. Framework of graph representation

distance:

AG2 =


c(v1) d(v1, v2) · · · d(v1, vN )

d(v2, v1) c(v2) d(v2, vN )
...

. . .
...

d(vN , v1) d(vN , v2) · · · c(vN )

 (3)

where c(vi) = |x′iy′′i − x′′i y′i|/(x′2i + y′2i )3/2 is the curvature
at sample point vi and d(vi, vj) = [(yi−yj)2+(xi−xj)2]1/2
is the distance between vi and vj . Fig.1 shows the process
of representing a segment of a signature in the form of AG1.

So far, a signature can be partitioned into several seg-
ments, each of which can be represented by two graphs in
the form of AG1 and AG2. The comparison between two
signatures is now converted into computing the distance
between graphs, which will be introduced below.

B. Graph Matching Techniques

Graph matching methods can be roughly partitioned into
two categories: exact matching and inexact matching. Due
to the unavoidable variation among signatures signed by the
same person, inexact matching turns out to be more suitable
for the task of signature verification.

In the graph matching phase, we employ the concept of
graph edit distance. In this sense, a graph can be transformed
to another one through a finite sequence of graph edit
operations, which can be defined differently in different
circumstances. Summing up the costs of all edit operations
obtains the total cost of the whole transforming process.
The minimum total cost of all possible sequences is the
graph edit distance between the graphs compared. Two main
issues can be drawn from the description of graph edit
distance above: definition of cost functions and the search
of minimum-cost edit operation sequence.

1) Cost Functions: Edit operations are usually classified
into four categories: deleting a node, inserting a node,
substituting a node and substituting an edge. However, for
simplification, we generalize all these operations into the
same type: the change of weights.

To further specify the cost function we adopted, for the
features of pressure, curvature and distance, the cost is the

absolute difference of weights before and after change, i.e.

c(rs → rt) =
∣∣w(rs)− w(rt)∣∣ (4)

where w(·) can be substituted by p(·) ,c(·) or d(·), r is a
node or an edge according to specific weighting function
and rs is the node or edge before change while rt is after.

As for the feature of angle, the following cost function is
used to measure the difference between angles:

c(rs → rt) =

{
|a(rs)− a(rt)| , when |a(rs)− a(rt)| < π

2π − |a(rs)− a(rt)| , otherwise
(5)

2) Computing Edit Distance: The minimum-cost edit
path can be retrieved by a tree search in the space of all pos-
sible edit paths. Although the optimal edit path can always
be found using this class of algorithms, the computational
complexity is exponential. For efficiency, we adopted a sub-
optimal algorithm proposed in [2]. The process of graph
matching is seen as an assignment problem, i.e. assigning
nodes of graph g1 to nodes of graph g2, so that the overall
edit costs are minimal. One of the popular method to deal
with assignment problem is Munkres’ algorithm [3].

Suppose graph g1 has n nodes, graph g2 has m nodes,
vi ∈ g1 and uj ∈ g2, the cost matrix of nodes is constructed
as a n ×m matrix C = {cij}n×m, in which cij = c(vi →
uj). Each entry of C indicates the cost of changing vi in g1
to uj in g2. Munkres’ algorithm finds a set of entries of C,
the sum of which is minimum while any two of which are
neither in the same row nor the same column.

However, if Munkre’s algorithm is directly applied to C,
no edge information will be taken into account. To exploit
edge information, cij is redefined as

cij = c(vi → vj) +min{
∑

c(evi → euj)} (6)

The last term of (6) implies the minimum-cost edge as-
signment between edges connected to vi in g1 and edges
connected to uj in g2. The Munkre’s algorithm is recursively
computed to obtain min{

∑
c(evi → euj)}. Details of the

algorithm can be found in [2]. We now address the distance
between graph g1 and graph g2 as d(g1, g2).

III. VERIFICATION WITH GRAPH REPRESENTATION

A. Preprocessing
As mentioned before, an on-line signature sample is

composed of a sequence of sample points. Since the numbers
of sample points of different signatures may vary drastically,
we resampled each signature down to 100 sample points,
the number of which is neither too small to retain enough
information, nor too large to provide efficiency; also, signa-
tures are normalized to avoid the impact of the variation of
position and scale. Segmenting points of each signature are
found respectively using methods that will be described in
Section IV-A and two types of graphs of each segment are
formed, therefore each signature is represented by graphs
twice the number of segments.

805805



B. Training

Since skilled forgeries are difficult to obtain in practice,
we use only 5 genuine signatures of each user to train user-
dependent classifiers, the number of which is also used in
many related researches. Given the training set of 5 genuine
signatures of a user, we denote them as si, i = 1, 2, 3, 4, 5.

The number of segments of different signatures may vary
using certain segmentation methods, so when a comparison
of two signatures occurs, one of them should be regarded as
the reference signature so that the other one can be aligned
to establish correspondence between segments, process of
which is described in Section IV-A. Function D(·, ·) indi-
cates the distance between two signatures with the first one
the reference signature. Specifically, it is the sum of edit
distances between each pair of corresponding segments of
two signature:

D(si, sj) =
m∑

k=1

d(gki , g
k
j ) (7)

In this equation, m is the number of graphs of si, and
gki means the kth graphs of signature si while gkj is the
correspondence of gki in signature sj . Each training signature
regarded as the reference signature once, distances between
reference and other four signatures are computed, and the
one with the smallest average distance is selected as the
template:

t = argmin
i
{(
∑
j

D(si, sj))/5} (8)

So st is chosen as the template.
In addition, for each graph, the maximum, average and

minimum distance from the template, as the reference sig-
nature, to the other 4 signatures are computed:

maxk = max
gk
i 6=skt

{d(skt , gki )}

avgk = (
∑

gk
i 6=skt

d(skt , g
k
i ))/4

mink = min
gk
i 6=skt

{d(skt , gki )}
(9)

C. Verification

Given a test signature s, we adopt the following scoring
strategy to verify its authenticity. First, for each of the
graphs, compute the distance between the template and the
corresponding graph of the test signature:

dk = d(skt , g
k
s ) (10)

Then, it is compare to maxk, avgk and mink and scored:

score(gks ) =


t1, d

k > maxk

t2, avg
k < dk ≤ maxk

t3,min
k < dk ≤ avgk

t4, d
k ≤ mink

(11)

Having obtained scores for all graphs, sum them up to get
the final score:

score(s) =
∑
k

score(gks ) (12)

The larger the score is, the more likely it is genuine.
Thus, given a certain threshold, if the score is lager than
it, the signature is assumed to be genuine; otherwise,
forgery. As for {t1, t2, t3, t4}, although it turns out that
t1 = 0, t2 = 1, t3 = 2, t4 = 3 might be a choice,
our preliminary experiments show that with a punishment
and bonus respectively given to the cases of dk > maxk

and dk ≤ mink, the performance is slightly better. So
t1 = −1, t2 = 1, t3 = 2, t4 = 4 would be used in the
following experiments.

IV. EXPERIMENTS

A. Segmenting Signatures

To reduce computational complexity, we introduce the
process of signature segmentation, so that the matching
is carried out between smaller parts of signatures, rather
than between graphs at the scale of the whole signatures.
Meanwhile, this avoids some unnecessary comparisons, for
example, the comparison between the first points of one
signature and the last ones of another, for they almost
definitely do not match.

There is a variety of techniques for on-line signature seg-
mentation, for example, by pen-tip pressure, by perceptually
important points, and by local extrema [1]. We adopt three
of the representative methods of segmentation.

1) Method 1: Equally Segmenting: This is quite intuitive.
Signatures are equally partitioned into smaller parts, which
all contain the same number of sample points.

2) Method 2: Segmenting by Strokes: Although it is
simple to directly use strokes to segment signatures, for
some signatures which contain very few strokes, it cannot
divide them into parts small enough to fit our graph matching
approach. So a signature is first segmented at pen-down
points, and if the number of segments is no larger than a
preset parameter r, the longest segment is equally partitioned
into two parts. Repeat this check until the number of
segments is satisfying.

3) Method 3 and 4:Segmenting by Local Extrema: In our
work, since verification phase is largely dependent on graph
matching, segmentation is merely a part of preprocessing
and is not determinant on verification result. Therefore, we
only use local maximum and local minimum to partition sig-
natures, which is satisfying serving our purpose. We denote
the method using maxima and minima of y-coordinates as
Method 3, while that of x-coordinates as Method 4.

Take Method 3 for example, suppose (xi, yi) denotes the
coordinate of the i-th sample point of a signature:

1. It is considered as a local maximum, if yi ≥ yi±j holds
for all j, in which j = 1, 2, ..., 5 while here 5 indicates the

806806



Figure 2. Examples of Different Segmentation Methods

range of points which a maximum dominates. Definition of
local minimum is likewise. Both maximum and minimum
are regarded as extremum candidates.

2. To avoid the impact from cases of ’platform’, i.e.
where y-coordinates of consecutive points are equal, and
flux caused by instability of signing process, if an extremum
candidate which satisfies the conditions above is no more
than 5 points after a determined extremum, it is ruled out.
Otherwise, it is accepted as an extremum.

The procedure of Method 4 is likewise. However, in this
way, some of the actual extrema may be ignored, but this
does not impair the successive procedure, for the purpose of
segmentation in our work is trying to divide signatures into
smaller parts under a uniform principle, rather than actually
find all extrema.

Figure 2 shows examples for each of the methods de-
scribed above, with the top-left sub-figure Method 1, the
top-right Method 2 and the lower row Method 3 and 4. Black
dots indicate the segmenting points, some of which may not
be on the strokes of signatures because sample points where
the pen is up are also included, but not displayed.

4) Alignment of Segments: There have been quite a lot
of articles trying to address this problem, most of which
involves merging and dividing segments, or in other words,
insertion and deletion of segmenting points. For Method 2
to 4, every comparison is carried out between a reference
signature and a signature to be compared to the reference,
during the process of which the number of segments of the
reference does not change while that of the other signature
is adjusted to match the reference, by insertion or deletion
of points.

Since using Method 1, the measurement of distance is
symmetric, i.e. D(si, sj) = D(sj , si), during the verification
phase for each segment, we substitute the distance between
the test signature and the template with the average distance
between the test signature and all training signatures. Specif-
ically, (10) is substituted by dk =

∑5
i=1 d(g

k
i , g

k
s )/5 In this

way, we take advantage of the symmetry of Method 1 to
better measure the distance between the test signature and

Figure 3. ROC Curves of Different Segmentation Method

Table I
PERFORMANCES OF DIFFERENT SEGMENTATION METHODS

Average EER Min EER Max EER σEER

Method 1 5.80% 0.00% 40.00% 11.14%

Method 2 19.33% 3.33% 50.00% 11.75%

Method 3 10.18% 0.00% 43.33% 9.95%

Method 4 10.84% 0.00% 46.66% 10.20%

the training set.

B. Comparison among Segmentation Methods

All four segmentation methods introduced in Section IV-A
are respectively implemented on the visual subcorpus of
SUSIG on-line signature database [4], which contains 20
genuine signatures and 10 skilled forgeries of 94 users.
Five genuine signatures are randomly selected to establish
the training set. The rest of the genuine signatures and all
skilled forgeries are used as the test signatures for each user.
We adopt equal error rate (EER) as the main criteria of
performance. Results are shown in Figure 3 and Table I.

Intuitively, Method 2 to 4 should present better results
than Method 1 since they exploit characteristics of each
signature rather than treat them equally. However, the truth is
just the opposite. Performance of Method 2 is bad, probably
because the number of strokes of signatures from the same
person vary so drastically sometimes, that the alignment
of segments is inaccurate. As for Method 3 and 4, the
problem maybe the asymmetry of distance between two
signatures, since when the numbers of extrema are not the
same, D(si, sj) 6= D(sj , si). Even though we restricted
for every comparison that there should be a reference, this
asymmetry impairs discrimination of signatures. As a result,
the performance of Method 3 and 4 is not ideal.

Figure 4 displays the distribution of segments of Method
1 over the the whole testing set, showing proportions of
segments fall into each category of {t1, t2, t3, t4}. Segments
of genuine signatures concentrate in t2 and t3 while majority

807807



Figure 4. Distribution of Segments

Table II
COMPARISON WITH OTHER METHODS ON SUSIG

Single System Fusion with DTW

Method 1 5.80% 2.46%

FD [5] 6.20% 3.03%

Table III
COMPARISON WITH OTHER METHODS ON SVC2004

Skilled Forgeries Random ForgeriesMethods
EER σEER EER σEER

SVM [8] 6.84% 10.18% 1.11% 3.46%

DTW [6] 6.96% 11.76% 3.47% 4.23%

Method 1 7.02% 8.73% 1.57% 4.13%

of segments of forgeries fall in t1, thus providing discrimi-
nation between genuine signatures and forgeries.

C. Comparison with Other Method

Method 1 is compared to the approach proposed in [5],
which adopted Fourier Descriptors (FD) to describe signa-
tures and was applied to SUSIG-Visual database. We have
also combined our method with a modified implementation
of the DTW method in [6], as is done in [5]. Results in Table
II show that our method performs better whether combine
with DTW or not. However, it is not clear in [5] how the
DTW method was modified, so we implemented it according
to our understanding, thus the fusion results might not be
conclusive.

We have also implemented our method on SVC2004 on-
line signature database. This database was designed and
established for the First International Signature Verification
Competition [7]. It has 1600 signatures in total from 40 user-
s, each has 20 genuine signatures and 20 forged signatures.
Since this database provides the information of altitude,
which we assume to be more consistent than pressure, so
all the pressure information in our method is substituted
by altitude. Table III shows the results, comparing to other
two methods applied on this database. Adopting the same
protocol as in the Competition, the performance of our
method is close to the best approaches on this database.

V. CONCLUSION

In this paper, we proposed a new method of on-line signa-
ture verification using segment-to-segment graph matching.
Four types of segmenting strategies and two types of graph
representation were introduced, and with a sub-optimal
graph matching algorithm to compute distance between
graphs, experiments are conducted. Results show that one
of the four segmentation methods gives good result, which
competes with the state-of-art methods. Further studies are
needed to solve the problems for other segmentation meth-
ods, which failed to give expected results.

ACKNOWLEDGEMENT

This work is funded by the National Basic Research Pro-
gram of China (No. 2010CB327902), the National Natural
Science Foundation of China (No. 60873158, No. 61005016,
No. 61061130560) and the Fundamental Research Funds for
the Central Universities.

REFERENCES

[1] D. Impedovo and G. Pirlo, “Automatic signature verification:
the state of the art,” IEEE Trainsactions on System, Man and
Cybernetics - Part C: Applications and Reviews, vol. 38, no. 5,
pp. 609–635, 2008.

[2] K. Riesen, M. Neuhaus, and H. Bunke, “Bipartite graph match-
ing for computing the edit distance of graphs,” in Proceedings
of 6th International Workshop on Graph Based Representations
in Pattern Recognition. springer, 2007, vol. 4538, pp. 1–12.

[3] J. Munkres, “Algorithms for the assignment and transportation
problems,” Journal of the Society for Industrial and Applied
Mathematics, vol. 5, no. 1, pp. 32–38, 1957.

[4] A. Kholmatov and B. Yanikoglu, “SUSIG: An on-line
signature database, associated protocols and benchmark
results,” Pattern Analysis and Applications, 2008. [Online].
Available: http://biometrics.sabanciuniv.edu/SUSIG

[5] B. Yanikoglu and A. Kholmatov, “Online signature verification
using fourier descriptors,” Eurasip Journal on Advances in
Signal Processing, vol. 2009, pp. 1–14, 2009.

[6] A. Kholmatov and B. Yanikoglu, “Identity authentication using
improved online signature verification method,” Pattern Recog-
nition Letters, vol. 26, no. 15, pp. 2400–2408, 2005.

[7] D. yan Yeung, H. Chang, Y. Xiong, S. George, R. Kashi,
T. Matsumoto, and G. Rigoll, “Svc2004: First international
signature verification competition,” in In Proceedings of the
International Conference on Biometric Authentication (ICBA),
Hong Kong. Springer, 2004, pp. 16–22.

[8] C. Gruber, T. Gruber, and S. Krinninger, “Online signature
verification with support vector machines based on lcss kernel
functions,” IEEE Transactions on Systems, Man, and Cyber-
netics - Part B: Cybernetics, vol. 40, pp. 1088–1100, 2010.

808808


