
Text Segmentation of Consumer Magazines in PDF Format

Jian Fan
Hewlett-Packard Laboratories

Palo Alto, California, USA
jian.fan@hp.com

Abstract— Text segmentation is usually the first step taken
towards the reuse and repurposing of PDF documents.
Through experimental evaluation, we found that the leading
text segmentation algorithms have limitations for
contemporary consumer magazines. We propose a new local
homogeneity measure based on line space, and incorporate this
new feature into a region growing algorithm. Using a fixed set
of parameters, our algorithm achieved robust performance on
PDF magazines with wide-ranging layouts and styles.

Keywords-page segmentation; text segmentation; PDF
analysis

I. INTRODUCTION

Portable document format (PDF) accurately preserves the
visual appearance of electronic documents across application
software, hardware, and operating systems, making it a
widely used format for document sharing and archiving.
However, most PDF documents do not maintain logical
structures of document content, such as text lines,
paragraphs, titles, and captions. The lack of structural
information makes it difficult to reuse and repurpose the
digital content represented by a PDF document. Extracting
logical structures from PDF documents has been an active
research problem with many real applications [1][2][3].

Text segmentation is usually the first step taken towards
logical structure extraction. The goal is to group low-level
text entities into lines and homogeneous blocks. Most
previous work targeted PDF documents of simple style and
layout. Lovegrove and Brailsford grouped text lines only if
they have the same font name, point size, and line space [1].
Chao and Fan required additional homogeneity regarding
color [2]. Although the strict conditions on font name, size,
and color may be valid for most technical documents, they
are often not true for contemporary consumer magazines.
Figure 1(L) is a page from National Geographic Magazine,
Feb. 2010. The font size of the lead paragraph gradually
changes, line by line. In addition, many such magazines
freely use various color and font families to highlight URLs
and other items. The strict homogeneity requirement may
result in severe oversegmentation. Figure 1(C) shows the
result using the method of [2]. Another limitation of the
above cited papers is that they both assumed that a key
grouping criterion, the line space, is a constant associated
one-to-one with a particular font on a global (page) scale. In
the context of determining reading order, Meunier proposed
an optimized XY-cut for text segmentation [4]. However, as
the author himself pointed out in the paper, XY-cut suffers
from two significant drawbacks. First, it is very sensitive to
two parameters specifying the minimal width/height of a cut,
and their automatic determination is difficult. Second, XY-

cut cannot handle the L-shaped text layouts that are common
in consumer magazines. Figure 1 (R) is such an example.

To the best of the author’s knowledge, the most complete
treatment to date comes from recent publications by
Bloechle [5][6]. Bloechle presented a bottom-up text
grouping method with a relaxed set of homogeneity criteria
and a follow-up top-down step to correct possible
undersegmentation. However, this hybrid approach has some
critical limitations that we will discuss later.

In this paper, we propose an improved algorithm. Our
main contributions include a novel homogeneity measure
based directly on line space and a bottom-up region growing
approach utilizing both the line space and font size measures.
The rest of the paper is organized as follows: Section II
describes the details of the proposed method and discusses
the main limitation of Bloechle’s method. Section III
presents some experimental results. Section IV concludes the
paper.

II. PROPOSED METHOD

The goal of text segmentation is to group text into
visually homogeneous blocks. In this paper, we limit
ourselves to true PDF documents, in contrast to PDF files
embedded with scanned document images. We assume that
text can be separated from image and graphic components
using existing PDF libraries. We further assume that text
follows horizontal reading order and is laid out as strictly
horizontal lines. We do not assume local consistency
between rendering order and reading order [7]. Our method
includes three stages: text info retrieval, the merging of
words into text lines, and the grouping of text lines into text
blocks.

Figure 1. Examples of consumer magazine pages and a text
segmentation result using a previous work. Left: a page from
National Geographic Magazine Feb. 2010. Center: text segmentation
result using a strict homogeneity criterion. Right: a page from PC
Magazine Mar. 2010.

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.163

794

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.163

794

For the convenience of subsequent description, we define
as notation the relative difference of two non-negative values

1v and 2v as the following:

A. Preprocessing and text attribute retrieval

We relied on the Adobe PDF Library (from Datalogics)
for rendering and retrieving text attributes. A given PDF
page is opened and a WordFinder (PDWordFinder) is
created. Words (PDWord) and quads1 (ASFixedQuad) are
then accessed via the WordFinder. Visual attributes that can
be retrieved include font family, font size, color and
bounding box. An example of bounding boxes of quads
retrieved using PDWordGetNthQuad is shown in Figure
2. Notice that the height of the bounding boxes varies
significantly within the paragraph and even within a single
text line due to differences in fonts. It can be seen in Figure
2(R) that the vertical center positions in most cases fluctuate
less in a center line than either the top or bottom position of
the bounding boxes.

B. Merging words/quads of text into line segments

The goal of this step is to merge words/quads into line
segments. As it will become clear shortly, a line segment will
not necessarily be a logical text line.

Since we do not assume that the rendering order is the
same as the reading order, we must rely on the font size and
spatial attributes. We start by sorting all quads in the order of
top-down and left-to-right based on the vertical center
position of the bounding boxes. Although it is not guaranteed
that sorted order agrees with reading order, the sorting
reduces the search range for neighboring quads.

The line-forming process proceeds by picking up a quad
that has not been assigned a line id to start a new line
segment. It then extends the line both left and right by adding
qualified quads to the line. When no qualified quad can be
added to the line, a new line is started until all quads are

1 The Acrobat and PDF Library API Reference defines a quad as “a
quadrilateral bounding a contiguous piece of a word. Every word has at
least one quad. A word has more than one quad, for example, if it is
hyphenated and split across multiple lines or if the word is set on a curve
rather than on a straight line.”

assigned a line id. The criteria we adopted for judging if two
quads can be merged are similar to Bloechle’s [5]:

1. Overlap. The vertical overlap between two bounding
boxes should be large enough such that
 jioji hhkqqO ,min, , where O is the vertical

overlap, h is the height of a quad and ko is a
threshold.

2. Font size. The font size difference between the two
quads should be small enough such that

 ,, fhji kff where f is the font size and
 fhk is a

threshold.
3. Space. The space between the two quads should be

small enough such that jidqji ffkd ,min, , where f

is the font size,
jid ,
is the horizontal distance between

two quads and kdq is a threshold.

We would like to point out that for text with horizontal
reading order, text merging in the horizontal direction should
be performed first. This is because we can safely merge two
words horizontally if their horizontal distance is closer than a
threshold. However, we may not merge two quads vertically
even if their vertical distance is very close.

We use font size and vertical center as the attributes of a
line segment. Taking possible text variations within a line
segment into account, these two attributes are computed
using weighted averaging. The width of quads is used as the
weight:

i
i

i
iiL wwff and

i
i

i
iiL wwyy ,

where
if ,

iy
and

iw are font size, vertical center and width

of the quad i, respectively. Figure 3 shows two examples
where red lines are the center lines of resulting line
segments. Notice the fragmentation of a logical text line for
the paragraph on the right side.

C. Growing line segments into blocks

The goal of this step is to merge text segments into
homogeneous text blocks. This will also enable us to regroup
fragmented line segments into logical lines. Therefore this is
the core of our text segmentation algorithm.

Here we first review the region growing method
proposed by Bloechle ([5], section 5.3) . Starting from a line
i, a block recursively takes in a new line j with the following
conditions:

1. The horizontal overlap between the two lines is non-
zero.

Figure 2. Left: a paragraph from a PDF version of PC World March
2010 p. 72. Center: bounding boxes of text quads retrieved using PDF
Library's WordFinder. Right: vertical center lines computed from
bounding boxes.

(1)

otherwise,,min

 and 0if,

0 and 0 if,0

,

2121

2121

21

21

vvvv

vvvv

vv

vv

Figure 3. Left: line segments from the paragraph in Figure 2 (L). Right: a
paragraph from the formating guidelines of IEEE CS.

795795

2. The font sizes of the two lines i and j satisfies
 jiprecisionji ffff ,min , where

precision is an

algorithm parameter set to 0.25.
3. The vertical distance (line space)

 jid ,
between the

two lines i and j satisfies

 jiclusteringji ffd ,min, ,

where
 clustering is another algorithm parameter set to

0.8.
However, Bloechle’s method suffers from a critical

drawback stemming from the third criterion. Due to the tie
between line space and font size, we found that it is
impossible to have a parameter

clustering that works on wide-

ranging document layouts and styles. This can be
demonstrated with just two PDF magazine pages shown in
Figure 4. The minimum value of clustering needed to

correctly merge the lines of the first paragraph in Figure 4(L)
is 2.5. However, for the page of Figure 4(R), 9.1clustering
would result in a serious segmentation error. In this case, the
caption paragraph (below the image) will be merged with the
lower portions of the left and middle columns as well as all
lines of the right column. The error of merging lines across
columns cannot be detected by the subsequent interline
change detection step. Therefore, there is not a single value
of

clustering good for both magazines.

This problem with Bloechle’s method arises due to

merging across block boundaries. Our method avoids the
pitfall by decoupling line space and font size and carefully
detecting block boundaries during region growing. We
deployed two measures in detecting block boundary:

1. Line space. Based on the observation that change of
line space alone usually indicates a block boundary,
we define a measure of relative difference between
the two line spaces as hiji dd ,, , (Eq. 1 and Figure

5), which is independent of font size. The line space
is defined as the distance between two vertical center
lines as illustrated in Figure 5. We can then detect
block boundary by comparing the relative line space

difference with a threshold
dlk : line i is a block

boundary if dlhiji kdd ,, , . This measure

fundamentally differs from Bloechle’s.
2. Font size. We also define a relative difference of font

sizes 21, ff (Eq. 1). Line i is a block boundary if

 flji kff , or flhi kff , , where f is the weighted

average of font sizes within the line i.

Using both line space and font size measures, we can
detect not only the block boundary, but also the type of
boundary as the following:

otherwise1,-

,ˆ,ˆ if else,1

,,,if,0

,,

,,

jifjihifhi

flhifljidlhiji

i ffwdffwd

kffkffkdd

B

where Bi is a flag indicating whether line i is a boundary line
and its type, wf is a weight emphasizing either font size or
line space, and

hid ,
ˆ and

jid ,
ˆ are normalized line spaces

jid ,
and

ihd ,
: jihihihi dddd ,,,, ,maxˆ , jihijiji dddd ,,,, ,maxˆ .

Boundary type “1” means “top-down”, or line i is closer to
line j than to line h. On the other hand, boundary type “-1”
means “bottom-up”, or line i is closer to line h than to line j.
We would like to point out that the above boundary detection
method is analogous to edge detection in bitmap images. An
example of boundary detection and the resulting
segmentation is shown in Figure 6. In the image on the left,
blue and red lines indicate “top-down” and “bottom-up”
boundaries, respectively, while green boxes indicate non-
boundary lines. In Figure 6(R), red polygons represent text
blocks obtained from our line growing algorithm, to be
presented next.

Upon the completion of boundary detection, text

segmentation is accomplished using region growing in the
vertical direction (both up and down). We consider two
neighboring lines i and j with horizontal overlap and no other

jid ,

hid ,

hf

if

jf

Figure 5. Line space and font size.

Figure 6. An example of boundary detection (left) and segmentation
(right).

Figure 4. Two PDF pages. Left: National Geographic Magazine Feb.
2010 p. 70. Right: Maclean’s Sept. 20, 2010 p. 84.

796796

text between them. Whether the two lines should be merged
can be determined according to three possible scenarios:

1. Neither line i nor line j is a boundary line (Bi = 0 and
Bj = 0). Of course, line i and j should be merged.

2. Only one of two lines i and j is a block boundary.
This includes four possible cases based on the
relative position of the boundary line and the type of
the boundary. Only in two cases should the two lines
be merged: the top line is a boundary line of the
“top-down” type, or the bottom line is a boundary
line of the “bottom-up” type. For the other two
possibilities, the two lines must not be merged.

3. Both lines i and line j are boundary lines. This also
includes four cases since each boundary line can
have two types. The two lines should be merged
only if the top line is the “top-down” type and the
bottom line is the “bottom-up” type. In this case,
because the text block will only have two lines, we
may impose a stricter condition on the maximum
line space, linking it to font size to avoid merging
two lines very far apart.

A concrete example of the above method is shown in

Figure 6(R) using the boundary detection result in Figure
6(L). We would like to point out that the layout of the bullet
items is an example where text with the same font does not
have the same line space globally. In this case, bullet items
have the same font. But space between bullet items differs
with line space of text within a single item. Our method
achieved the correct segmentation, grouping text that belongs
to a single item without splitting them.

A c-style pseudo-code for the line segment grouping is

included to the right.

III. EXPERIMENTAL RESULTS

The proposed algorithm was thoroughly tested on three
consumer magazines: National Geographic Magazine,
February 2010; PC World Magazine, March 2010;
Maclean’s (Canada) September 20, 2010. The three multi-
page PDF files were downloaded from the Internet. The
algorithm parameters are listed in Table I.

TABLE I. ALGORITHM PARAMETERS

Parameter Value Description

fhk 0.4 Maximum relative font size difference for
horizontal merge

dqk 0.6 Maximum space between horizontal words to
merge

ok 0.4 Minimum vertical overlap to merge two words
horizontally

flk 0.25 Maximum relative font size difference for line
merging

dlk 0.2 Maximum relative line space difference for line
merging

fw 2.0 Weight for computing boundary orientation

It should be noted that we had to set the threshold kdq

very low (60% of font size) in order to accommodate the
very narrow column space presented in the Maclean’s pages,
which utilize lines as column separators. The low threshold

caused more text lines to be fragmented. Nevertheless, the
proposed algorithm achieved very satisfactory results on all
three magazines.

As precise quantitative evaluation for the three magazines
requires ground truth, which is very time-consuming and still
involves some subjective judgments, we only attempted a
coarse and preliminary assessment. We manually counted
content text blocks and captions and inspected the
corresponding segmentation results. We did not count
advertisement pages due to the difficulty of interpretation.
Nor did we count titles, tables and maps. For example, we
counted 3, 10, 7, 5, 6, and 4 text blocks respectively, for the
six pages in Figure 7 starting from the top left in clockwise
order. The segmentation performance based on counted text
blocks as well as the processing time is presented in Table II
below.

TABLE II. QUANTITATIVE EVALUATION

Magazine Num.
Pages

Num.
Text
Blocks

Num.
Segmented
Blocks

Processing
Time
*(sec.)

National Geo. 155 271 284 8.9
PC World 107 430 432 10.2
Maclean’s 100 391 393 10.1

 *PC Intel Core2 Duo 2.93 GHz

int GroupLineSegToBlocks(LineSeg *lines, int nlines) {
 Sort lines in top-down and left-right based on the geometric center
point;
 For each line segment, identify its vertical neighbors above and
below, and save the result with each line segment. Note that vertical
neighbor implies horizontal overlap.
 Detect boundary lines and their type.

 Initialize bid of all line segments to -1;
 int bid = 0;
 for(i=0;i<nlines;i++) {
 if(lines[i].bid>=0)
 continue;

 RegionGrow(lines,nlines,i,bid);
 bid++;

}
return bid;

}

void RegionGrow (LineSeg *lines, int nlines, int seed,int bid) {
 Queue q; // a FIFO quaeue
 q.enqueue(seed);
 lines[seed].bid = bid;

while(q.isEmpty()==false) {
 int i = q.dequeue();
 for (each neighbor line j above and below line i) {
 if(lines[j].bid>=0)
 continue;
 merge = check if line j should be merged;
 if (merge==true) {
 lines[j].bid = bid;
 q.enqueue(j);
 }
 }
}

}

797797

Text segmentation results using six pages from the three
magazines are shown in Figure 7. Four of the original pages
are shown in previous sections.

In terms of counted text blocks, our method achieved

over 99% accuracy. Only a very small number of errors were
made. They may be detected and fixed in a post-processing
step with some heuristics. However, as we expected, text
segmentation based on purely visual properties has its
limitations. We found a significant number of non-
meaningful segmentations in titles, tables, lists and maps.
Some examples of this are shown in Figure 8.

IV. CONCLUSION AND FUTURE WORK

We have presented a systematic method for text
segmentation of PDF documents. The core of our algorithm
lies in a novel measure of line space and a boundary
detection method based on combined relative differences of
font size and line space. Being localized in nature, our
method overcomes some key limitations associated with
global and top-down algorithms. We also demonstrated the
robust performance of our proposed algorithm on three
contemporary consumer magazines that contain complex
layouts.

We also identified the limitations of our algorithm on
titles, tables, lists and maps. Towards a complete PDF
document understanding system, we plan to work on the
following aspects:

1. Graphic recognition and integration with text
segmentation. In many cases, graphic components
such as lines and color background are used to
separate text. The detection of graphic components
and their integration with text segmentation will
greatly improve performance.

2. List and table recognition.
3. Map recognition. Text belonging to map regions

often has various orientations and excess character
space. These are the most challenging cases for text
segmentation.

ACKNOWLEDGMENT

The author would like to thank Dr. Hui Chao for
providing her research codes and many helpful discussions.

REFERENCES

[1] W. S. Lovegrove and D. F. Brailsford, “Document analysis of PDF

files: methods, results and implications,” Electronic Publishing, vol.
8(2 & 3), pp. 207–220, June & Sept. 1995

[2] Hui Chao and Jian Fan, “Layout and content extraction for PDF
documents”, S. Marinai and A. Dengel (Eds.): DAS 2004, LNCS
3163, pp. 213–224, 2004

[3] H. Déjean and J.-L. Meunier, “A system for converting PDF
documents into structured XML format,” H. Bunke and A.L. Spitz
(Eds.): DAS 2006, LNCS 3872, pp. 129 – 140, 2006

[4] J.-L. Meunier, “Optimized XY-Cut for determining a page reading
order,” Proc. ICDAR, pp. 347 - 351, vol. 1, 2005

[5] J. -L. Bloechle, “Physical and logical structure recognition of PDF
documents”, Doctoral thesis No. 1676, University of Fribourg
(Switzerland), June 2010

[6] J. -L. Bloechle, D. Lalanne and R. Ingold, “OCD: An Optimized and
Canonical Document Format,” Proc. ICDAR, pp. 236 – 240, 2009

[7] J. Fang, Z. Tang, L. Gao, “Reflowing-driven paragraph recognition
for electronic books in PDF,” G. Agam, C. Viard-Gaudin (Eds.),
Document Recognition and Retrieval XVIII, Proc. of SPIE-IS&T
Electronic Imaging, vol. 7874, 2011

Figure 8. Examples of a title, table, list and map that require
recognition and special handling.

Figure 7. Selected text segmentation results. Left column: pages from
National Geographic. Middle column: pages from PC World. Right
column: pages from Maclean’s.

798798

