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Abstract—Information Retrieval in large digital document
repositories is at the same time a hard and crucial task.
While the primary type of information available in documents
is usually text, images play a very important role because
they pictorially describe concepts that are dealt with in the
document. Unfortunately, the semantic gap separating such
a visual content from the underlying meaning is very wide.
Additionally image processing techniques are usually very
demanding in computational resources. Hence, only recently
the area of Content-Based Image Retrieval has gained more
attention. In this paper we describe a new technique to identify
known objects in a picture based on a comparison of the
shapes to known models. The comparison works by progressive
approximations to save computational resources, and relies on
novel algorithmic and representational solutions to improve
preliminary shape extraction.

Keywords-Shape Recognition; Information Retrieval; Docu-
ment Processing; Digital Libraries;

I. INTRODUCTION

Pictorial information is a precious source of information

to understand, index and retrieve documents in a digital

library based on their content. Indeed, while much effort

was devoted in last decades to extract information about the

document content from textual components, more recently

significant attention has been paid towards images, as well.

Understanding an image does not mean just being able to

retrieve images in a database that are pictorially similar to

a query image; it also involves recognizing what that image

is about, including (or starting from) the objects it contains.

Computer Vision deals with the analysis of digital images by

computers, in order to discover and understand what is repre-

sented therein, and where. Raster images pose the additional

problem that no high-level information is available about

shapes and other geometrical elements, and each pixel is

syntactically (although, clearly, not semantically) unrelated

from all the others. In particular, an important sub-field of

Computer Vision is Object Recognition (OR) [1], having

many applications in automation processes. Recognizing an

object means being able to distinguish it from a set of other

objects. OR techniques usually classify objects based on

distinguishing characteristics of the class they belong to,

extracted from the image through a sequence of steps. This

requires to preliminarily analyze a set of objects of a known

class to acquire the most relevant information to be exploited

subsequently.

This work aims at developing a method for Object Recog-

nition in raster images that tries to understand an image by

looking for known shapes in it, and relies on a combination

of existing and novel image processing techniques, as a pre-

liminary step to describe images using higher-level, human-

understandable concepts and relationships among them. In

particular, this paper will focus on the identification of poten-

tial objects in the image, on their representation and storage

in suitable data structures and, lastly, on the definition of

a suitable matching algorithm that allows to detect known

objects in new images. After recalling some background

notions and related work in next Section, the proposed

technique will be described and evaluated in Sections III

and IV, respectively. Lastly, Section V will conclude the

paper and outline future work issues.

II. BACKGROUND AND RELATED WORK

Although the techniques and algorithms to perform au-

tomatic Object Recognition are very different, depending

on the operating environment, they all rely on a common

background made up of image processing techniques, and

follow a general workflow made up of three steps [2]:

1) Image Processing: a fundamental step that transforms

the source image in another image more suitable for

running subsequent steps and reaching the objectives;

2) Feature Detection: applies methods aimed at extracting

characterizing elements of an image that are more

significant than single pixels;

3) Recognition: exploits the features extracted in previous

steps to first define classes of objects and then retrieve

objects belonging to those classes.

A digital image consists of a set of primitive numeric

items (pixels) that in isolation provide little significant

information to understand the meaning of the whole picture.

Several pixels, taken together, may make up more significant

items such as lines, contours, blobs, textures. To be able to

extract such a kind of information, often the image must be

properly pre-processed using particular filters, i.e. functions

operating on pixels that enhance some important details

and/or dim other, less significant ones, such as the noise

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.151

723

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.151

723



introduced by the acquisition means or by the representation

format (if lossy).

Step 2 consists in identifying and extracting significant

information from the pre-processed image resulting from

(a combination of) the aforementioned techniques. The in-

formation obtained in this way allows for a higher-level

interpretation of the image. Depending on the kind of

features to be extracted, several techniques are available, and

often specific features are exploited for particular objectives.

Features can be distinguished according to their morphology:

Keypoint. Provide point-level information, that is robust

to occlusions and scale invariance (e.g., [3]);

Edges. Concern the contour lines of objects in images,

usually corresponding to zones where a change of color,

intensity or texture occurs [4];

Region segments. A segmented region is made up of a

set of pixels that ‘go together’ according to some logic (e.g.,

being part of a same object).

Each element identified in the image can be compared

to previously stored models in order to check possible

correspondences. This is done by different algorithms, con-

sidering different kinds of information. Limitations in ap-

plying Computer Vision systems come from the difficulty

in extracting information from images. For an OR system to

be effective and flexible, several properties are desirable.

Here, we focus on the following ones, deemed as very

important [5]:

• Scale invariance.

• Translation invariance (the position of the object to

be recognized cannot be assumed to be fixed in the

acquired image).

• Robustness to change in intrinsic variables of the image

(even in controlled environments, small changes in

color, luminance or contrast can take place).

• Rotation invariance. Unfortunately, rotating a 3D object

usually results in completely different shapes depending

on the perspective; nevertheless, making the system ro-

bust at least to 2D rotation already ensures a noteworthy

degree of reliability.

• Efficiency (usually opposite to effectiveness).

III. OBJECT RECOGNITION TECHNIQUE

The object recognition technique we propose works in

different steps on the input image. A graphical summariza-

tion of the various steps, applied to the original image in the

top-left, is provided in Figure 1.

A. Pre-processing

We would like to blur the image within objects, so that

they can be considered as single blobs by the segmentation

step, but without blurring (and possibly even sharpening)

their contours also, otherwise the resulting shape would be

meaningless. Any blurring and edge-enhancing technique

might be used in this step (of course, the outcome would

Figure 1. Processing steps on a sample image

be different). The experiments in this paper were obtained

using two novel filters (due to space limitations, and to the

focus of this paper on the overall strategy, here we must

drop their detailed specification) we purposely developed for

reaching the above objective (see the top row of Figure 1):

1) selectiveBlur: to smooth the image while preserving

the contours; the output pixel is assigned a color

determined by a weighted average based on color

similarity of a selection of the 8-neighbors.

2) extractContour: returns a gray-scale image with en-

hanced object contours (darker zones correspond to

sharper contours in the original image). Basically, a

pixel is considered as belonging to a contour if it is

placed in a point where the image color changes: the

more the change, the more the importance of that pixel

as a contour one.

Differently from the previous step, the image segmentation

step (second row from the top in Figure 1) exploits two

standard techniques to find candidate objects:

3) binarization: standard tresholding (247 was empiri-

cally found to be an effective threshold on average)

on the outcome of extractContour.

4) region growing: by contraposition, the blobs sur-

rounded by such contour areas are considered as

candidate objects in the image, and are determined

by filling the white areas.
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B. Feature Extraction / Representation

Given a blob, the associated shape is a more refined

description ready to be compared to the available models

(expressed in the form of shapes, as well). In particular,

we focus on the blob border, that was found to be a very

indicative feature for object recognition [6]. Specifically,

Fourier descriptors based on distance from centroid of the

contour points of the shape proved to be very effective. Thus,

we adopted this indicator, but embedded in a novel approach.

Indeed, we do not consider the distance from the centroid

for all contour pixels, but just of those intersecting selected

radian lines at pre-defined angles, originated in the shape

centroid.

A first, crucial issue is determining the number of samples

to be taken, in order to have a sufficiently accurate repre-

sentation without burdening the system more than needed.

Clearly, the proper tradeoff also depends on the size of

the database of models to be matched, and on the kind of

objects the system is intended to handle. Next subsections

will explain how and why we set such a parameter. Another

question is how to represent the single sampled values. We

obtain scale invariance by normalizing all the sampled values

of a shape to the largest sampled value in that shape. More-

over, we empirically found that a scale of 256 integer values

provides a sensible tradeoff between sufficient accuracy and

tolerance to noise in the blob contours (requiring just a single

byte).

Summing up, a shape is described by a histogram of

n sampled values, each normalized to the integer interval

[0 . . . 255], taken at equally spaced angles from the positive

X axis in a coordinate system centered in the blob centroid.

The bottom-left of Figure 1 shows a graphical representation

of two shapes (one extracted from an image, and a model

shape) using both radians (above) and the corresponding

‘unrolled’ histogram (below). This choice ensures invariance

with respect to translation (no information on spacial place-

ment is stored), scale (that does not affect the data structure,

but just the values it contains), and intrinsic variables of the

images such as luminance and color (completely ignored by

the representation, although more refined techniques are to

be included in future work). It is also robust to 2D-rotation

(by rotating the histogram) and mirroring (by mirroring the

histogram).

C. Shape Matching

Although basing object recognition on the shape only is

clearly limiting, because it represents just a part of the whole

matter, especially in 3D images, nevertheless a method that

is invariant to translation, scale, 2D rotation and color is

often sufficient.

Now, once the information about the candidate shapes

in an image has been extracted, provided a base of sam-

ple relevant shapes of interest (‘models’) is available, the

extracted shapes can be compared to those models for

possible matching. The expected outcome of the matching

is a similarity/distance value among the two compared

elements. We compare their histograms, representing the

distance from the centroid of the blob border in each of the

radian directions, according to the intuition that, the more

deformed is an object with respect to the model, the more

different they are. Specifically, we proceed by overlapping

them and summing the absolute pairwise differences of

corresponding bars to obtain the overall evaluation (in this

case, representing a distance). Another option might be using

the statistical measure of variance, but since in our case

both the number of values and the values are normalized,

a simple summation provides the same results with much

less effort. Moreover, for rotation invariance, one such

comparison for each displacement of the histogram to be

classified over that of the model (considering the histograms

as if the last bar were immediately followed by the first

one) is needed, displacing each time the histogram by 1

degree to the left, for a total of comparisons equal to the

number of bars considered, and then the best case (i.e., the

minimum distance value) is taken. The outcome is shown

in the bottom-right of Figure 1, where the model shape

has been rotated to the best-matching position, and the

rightmost histogram shows the pairwise differences among

the bars of the shape and model histograms on the left

for such an alignment. Overall, if there are n bars to be

compared, the effort consists of c = n · n comparisons

(subtractions). For mirroring-independence one must double

the effort, repeating the above procedure and proceeding in

the opposite directions when rotating the histogram (from

left to right in one case, and from right to left in the other).

Figure 2 shows the sensitivity of the proposed technique

to different geometrical transformations for a sample image

(left shape) and corresponding modifications (right shape).

For each comparison, the best-matching alignment of his-

tograms is shown, along with the corresponding difference

histogram (right-most histograms). Invariance to translation

trivially holds. Invariance to rotation (top case) is proved,

since the difference between the shapes is so close to zero

that the bars are not visible in the difference histogram.

As to scaling (middle case), the difference is visible, but

nevertheless small. Also changing the image colors, in this

case by considering the negative of the image (bottom case)

has a slight effect on the comparison, due to the different

outcome of the segmentation step.

D. Progressive Approach

Since the matching effort is quadratic in the number of

bars to be compared, the basic version of the technique

described above might turn out to be inefficient as long as

the database size grows. Our solution to tackle this problem

consists in a progressive matching procedure, that starts with

a few comparisons, and repeatedly selects the most similar

models only to carry on to a next matching step including
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Figure 2. Check of invariance on a sample image

more comparisons, until a single model neatly wins or the

maximum number of comparisons has been reached.

A simple and straightforward way for increasing the

number of comparisons at each matching stage is doubling

it, which would make more comfortable the use of powers of

2. In fact, the binary system for angle measurement divides

the round angle into 256 degrees, called brads (from Binary

RADianS). Thus, a straight angle consists of 64 brads, and

angles can be comfortably represented using a single byte

(more in general, an integer number of bytes — but in our

case 2 bytes would be already too much).

The first stage in the matching algorithm compares just

16 values (less comparisons would be too limited to provide

a sensible indication on the actual shape), sampled at 16 · i
brads (i = 0, . . . , 15) along the raw shape, to the 256 values

representing a model, for a total of just 16 · 256 = 4096
comparisons for each shape in the database. Due to the dou-

bled sampling frequency technique, the samples considered

at each next step are a superset of those in the previous one,

and hence the number of new comparisons per shape is,

respectively, 4096, 8192, 16384 and 32768 in the last step.

Figure 3. Sample comparisons

IV. EVALUATION

Let us start with a quick evaluation of the effectiveness

of the proposed approach, by comparing noteworty pairs

of objects, or objects taken from real pictures to artificial

models stored in a database. For this evaluation, we exploited

a small database of shapes, and ran the system to recognize

shapes in new pictures (not exploited to build the database).

The system results are sensible even when dealing with very

low-quality contours (as for the top case in Figure 3). It is

also noteworthy the successful recognition of a sunflower

(bottom of Figure 3), despite of the different number and

orientation of the petals.

As to efficiency, interestingly the system never required

to run the last step (256 comparisons), but always re-

turned a solution with at most 128 comparisons. Often 16

comparisons only were sufficient to identify the correct

shape, and in almost all cases of shapes not included in

the database it actually returned no classification. Let us

show the performance evolution under different parameters,

referring to a PC endowed with a Dual Core processor at

2GHz and running Windows Vista.

First, we compared a single shape to 16 models chosen

at random from the database. The progressive technique

required 3 steps only (up to 64 comparisons) to find a neat

winner model for classification (top graphic in Figure 4,

where the lines report the times for matching the shape to

each model at each step). Less than 5 msec were taken

for each matching in the first stage, up to less than 30

msec for the third stage. Carrying on each time to the

next step all models whose similarity exceeds the average

similarity among the models in the previous step, 5 shapes

are discarded in the first step, and 3 more in the second one;

then, among the 8 survivors, the third step determines the

winner. The bottom graphic in Figure 4 reports the surviving

models at each step for increasing size (16, 25, 35 and 50)

of the database. The larger the database, the more shapes

are cut off at each step; for databases including 35 and 50

models one more step (128 comparisons) is needed.

Lastly, we turn to evaluate the effort required to process
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Figure 4. Matching performance for a single shape

a whole picture, with all the shapes it includes, against

databases of different (increasingly larger) size. The detailed

figures obtained when matching the previously mentioned

5-shape sample image against databases including 16, 25,

35 and 50 models, respectively, are graphically summarized

in Figure 5. As expected, the time needed to process an

entire picture, with all the shapes it includes, is linear in

the number of shapes to be processed (taking the lowest

line in Figure 5, nearly 4 secs were needed to process 5

shapes in the sample picture considered). Also the size of

the database seems to marginally affect the effort: in the

considered cases, the difference among a database including

50 models and one made up of just 16 models is about 1

sec, and, interestingly, the time for the databases sized 25

and 35 is in fact overlapping.

V. CONCLUSION

Information expressed by images can be hardly accessed,

due to the semantic gap separating the raw set of pixels

from their overall perceptual meaning. Nevertheless, images

are very information-dense elements, and hence being able

to understand their content would help to support several

automatic tasks on documents. This work specifically fo-

cuses on Object Recognition, as a fundamental task towards

a high-level description of the image content in terms of the

objects contained and their inter-relationships. A progressive

technique is proposed, that integrates and improves a set

of existing representation and processing techniques for

Figure 5. Matching performance for a 5-shape image and 4 databases of
different size

identifying objects belonging to known classes for which

model shapes are available. A prototype implementation of

the proposed approach suggests that effective recognition

can take place, with reasonable efficiency in terms of time

and space resources. It can recognize objects based on their

shape, independently of scaling, translation, mirroring and

(2D) rotation.
Future work will concern finding a mix of features that are

sufficiently complementary to significantly improve recog-

nition performance over application of shape recognition

alone, while not increasing excessively the computational

burden. Moreover, we are working on devising strategies for

exploitation of the high-level description provided by this

technique, both for document understanding and indexing.

Other directions for investigation concern the improvement

of the pre-processing step, for providing a better input to the

recognition engine.
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