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Jiřı́ Matas

Centre for Machine Perception, Dept. of Cybernetics

Czech Technical University, Prague, Czech Republic

matas@cmp.felk.cvut.cz

Abstract—An efficient method for text localization and recog-
nition in real-world images is proposed. Thanks to effective
pruning, it is able to exhaustively search the space of all
character sequences in real time (200ms on a 640×480 image).
The method exploits higher-order properties of text such as
word text lines. We demonstrate that the grouping stage plays
a key role in the text localization performance and that a robust
and precise grouping stage is able to compensate errors of the
character detector.

The method includes a novel selector of Maximally Stable
Extremal Regions (MSER) which exploits region topology.
Experimental validation shows that 95.7% characters in the
ICDAR dataset are detected using the novel selector of MSERs
with a low sensitivity threshold.

The proposed method was evaluated on the standard ICDAR
2003 dataset where it achieved state-of-the-art results in both
text localization and recognition.

Keywords-text localization;real-world images;text-in-the-wild

I. INTRODUCTION

Text localization and recognition in real-world images is

an open problem, unlike printed document recognition where

state-of-the-art systems are able to recognize correctly more

than 99% of characters [1]. Applications of text localization

and recognition in real-world images range from automatic

annotation of image databases based on their textual con-

tent (e.g. Flickr or Google Images), assisting the visually

impaired to reading labels on businesses in map applications

(e.g. Google Street View).

Existing methods for text localization can be categorized

into two different groups - methods based on a sliding

window and methods based on regions (characters) group-

ing. Methods in the first category [2], [3] use a window

which is moved over the image and the presence of text is

estimated on the basis of local image features. While these

methods are generally more robust to noise in the image,

their computation complexity is high because of the need to

search with many rectangles of different sizes, aspect ratios

and potentially rotations. Additionally, support for slanted

or perspectively distorted text is limited.

The majority of recently published methods for text

localization falls into the latter category [4], [5], [6], [7].

The methods differ in their approach to individual character

detection, which could be based on edge detection, character

energy calculation or extremal region detection. While the

methods are paying great attention to individual character

detection, grouping of individual characters into words is

performed based on heuristics or graph optimization meth-

ods and only unary and pairwise constraints are used.

In this paper, a general and efficient method for text

localization and recognition is presented, which thanks to

effective pruning is able to group character regions by

an exhaustive enumeration of all character sequences. The

method exploits higher-order properties of text, which can-

not be incorporated into standard graph (or hypergraph)

optimization methods where only unary or binary features

are used. We demonstrate that the grouping stage plays a

key role in the text localization performance and that even a

character detector with a lower precision is sufficient if the

grouping stage is accurate.

As a second contribution, an extended version of

Maximally Stable Extremal Regions (MSERs) [8] called

MSER++ is introduced. Experimental evaluation shows that

95.7% characters are detected as MSER++, which is a

significant improvement over standard MSER (84.0%) as

used in our previous method [6].

The rest of the document is structured as follows: In

Section II, the proposed method is described, in Section

III experimental evaluation is performed and the paper is

concluded in Section IV.

II. TEXT LOCALIZATION

A. Character grouping search space

Let I denote an image of n pixels and let P(I) de-

note set of all subregions of the image I. Let sL denote

an arbitrary sequence of non-repeating image subregions

sL = (r1, r2, . . . , rL) : ri ∈ P(I), ri 6= rj ∀i, j of

length L, let SL =
⋃n

i=1 s
i denote set of all sequences

of length L and let S denote set of all sequences of

lengths up to n S =
⋃n

i=1 S
i. Given a verification function

v : S → {0, 1}, the set of estimates (words) E is defined as

E = {w ∈ S : v(w) = 1}. The methods for text localization

aim to find an optimal verification function v∗(s) so that

f-measure of precision p = |E∩T |
|E| and recall r = |E∩T |

|T | is

maximized, where T denotes set of words in the ground

truth.
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Figure 1. MSER lattice induced by the inclusion relation. Only certain
nodes correspond to characters

Table I
INDIVIDUAL CHARACTER DETECTION RATE USING DIFFERENT

VARIANTS OF MSER

MSER root only (%) complete tree (%)

Greyscale 74.9 93.1
Red channel 72.8 93.2
Green channel 74.9 93.5
Blue channel 72.5 87.1

Combined 84.0 95.7

B. Extended Maximally Stable Extremal Regions

The cardinality of the set S is exponential in the number

of pixels in the image, thus it is infeasible to exhaustively

search the whole set in order to obtain an optimal solution

even if we assume that an optimal verification function v∗(s)
exists and can be efficiently calculated. Assuming that each

character is a contiguous region of the image I (which

implies that dots and accents have to be handled separately),

the set S can be limited to a set of sequences of contiguous

regions without any loss in performance.

Zimmerman and Matas [9] showed that individual charac-

ters are often Category Specific Extremal Regions (CSERs)

and Donoser et al. [10] further demonstrated that charac-

ters are detected as Maximally Stable Extremal Regions

(MSERs) [8]. In [6], we show that detection rate of MSERs

is improved if multiple projections are used.

In this paper, we extend this approach by using whole tree

of MSER lattice induced by the inclusion relation, in contrast

to [6] where only root nodes (i.e. supremums of the MSER

lattice) were considered which implied that a high MSER

margin had to be used to maximize the number of root nodes

which correspond to letters. If a lower margin is used, the

MSER detector finds more regions but only certain regions

correspond to characters. As shown in Figure 1, smaller

MSERs are embedded into bigger ones, thus forming a tree

where only certain combinations of nodes can be selected

as letters, because in a word one letter cannot be embedded

into another. We refer to individual nodes of the MSER tree

as MSER++ to emphasize that multiple projections (gray,

red, green and blue channel) are used and the internal tree

structure is taken into account.

C. Exhaustive search

Let M denote the set of MSER++ in the image I. Even

though the cardinality ofM is linear in number of pixels, the

cardinality of the set S of all sequences is still exponential

(the complexity has decreased from 22
n

to 2n only).

Let v̂1, v̂2, . . . , v̂n denote “upper-bound” verification func-

tions which determine whether sL is a subsequence of a text

sequence or a text sequence itself

v̂L(s
L) = 1 ⇐⇒ ∃s′ : sL ⊆ s′, v(s′) = 1 (1)

It follows that the enumeration of E = {w ∈ S : v(w) = 1}
can be equivalently defined as finding the set of unextendable

sequences

Ê =
n
⋃

L=1

{w ∈ EL : ∀s′ ⊃ w ∈ EL+1 v̂L+1(s
′) = 0} (2)

where E1, E2, . . . , En denote sets of text (sub)sequences of

length L

E1 =
{

r ∈M | v̂1(r) = 1
}

E2 =
{

(r1, r2) | r1, r2 ∈ E
1, r1 6= r2, v̂2(r1, r2) = 1

}

E3 =
{

(r1, r2, r3) | (r1, r2), (r2, r3) ∈ E
2,

ri 6= rj ∀i, j, v̂3(r1, r2, r3) = 1
}

. . .

En =
{

(r1, r2, . . . , rn) | (r1, r2, . . . , rn−1),

(r2, r3, . . . , rn) ∈ E
n−1, ri 6= rj ∀i, j, v̂n(r1, r2, . . . , rn) = 1

}

(3)

This decomposition allows efficient pruning of the ex-

haustive search, because non-text subsequences are excluded

without a need to build a complete sequence, which prevents

from a combinatorial explosion of enumerating the SL sets

of all sequences of length L.

D. Verification functions

The choice of upper-bound verification functions v̂L is

crucial for the proposed method. Since the optimal ver-

ification function v∗(s) is not known, the upper-bound

verification functions v̂L have to be approximated. The key

criteria for the approximation is achieving high recall while

rejecting as many non-text sequences as possible to prune

the search and limit the size of the EL sets.

The function v̂1(r) is a SVM character classifier, which

determines whether the region is a character or not based

on a set of region measurements (height ratio, compactness,

etc.) - see [6]. The function is scale invariant, but not rotation

invariant so possible rotations had to be included in the

training set. On average, the v̂1 function correctly includes

83% of text regions whilst it correctly excludes 93% of non-

text regions such as plants, trees or other random textures.

The v̂2(r1, r2) function consists of pairwise rules which

compare measurements of the two regions. The rules require

that height ratio, centroid angle and region distance normal-

ized by region width fall within a given interval obtained

in a training stage (similar binary rules have been used in

many previous works [5], [6], [7], [4]).

688688



v1 v1 + v2 v1 + v2 + v3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

precision

recall

Figure 2. The effects of applying the verification functions v̂1, v̂2 and v̂3

on individual character localization performance

Table II
AVERAGE VERIFICATION FUNCTION CHARACTERISTICS

Function precision (%) recall (%) pruned (%) total time (s)

v̂1 28.9 83.2 93.3 0.21
v̂2 61.6 94.2 97.0 0.01
v̂3 78.5 87.2 37.2 0.12

In the proposed method, a new rule which exploits the

structure of MSER lattice is added. As demonstrated in

Figure 1, two regions cannot be in the same sequence if

there is a (transitive) parent-child relationship between them,

as in this case the first region is embedded into the second

one or vice-versa, which is extremely rare for standard text.

In experiments, the v̂2 function pruned out on average

97% of region pairs in an image, but still a significant

number of region pairs which are not text passed through

(precision is only 62%) - see Table II. This is caused by

the fact that the individual measurements on two regions

can greatly differ (for instance, the height ratio between the

leading capital letter and following lower-case letters can be

greater than 3 in some words, the color of two subsequent

letters can differ a lot because of lighting conditions, etc.),

so a very conservative (i.e. large) interval has to be used to

support this variety of texts.

Since the implemented pairwise rules are not sufficiently

selective, higher-order features have to be used to reduce the

number of false positives. One of such features is based on

the observation that letters in a word can be fitted by one

or more top and bottom lines (see Figure 3a) and distance

of individual letters from these lines is limited (subject to

normalization by region height). We refer to this set of lines

as word text lines.

Spain
t1

t2

b1

b2

2 3 4 5 6
0.8

0.85

0.9

0.95

1

(a) (b)

Figure 3. Word text line parameters (a). Dependence of text line parameters
estimate accuracy on sequence length (b)

Word text lines estimate τ = (t1, t2, b1, b2, xmin, xmax, h)
is obtained by inferring a direction k of the text by fitting

bottom points using Least-Median of Squares and then

fitting top and bottom points of all regions with at most two

Figure 4. Word text line estimates and triplets accepted (top row) and
rejected (bottom row) by the v̂3 function. Top points and lines marked
green, bottom points and lines marked red

top (t1, t2) and bottom (b1, b2) lines with inferred direction

k in order to obtain minimal square error (see Figure 4).

Variables xmin, xmax, hmax denote left and right boundary

of the word and word height.

In order to obtain a direction of the text, at least 2 regions

are needed, but this estimate can be very inaccurate (e.g.

fitting bottom points of letters “ly” will result in an incorrect

direction, because bottom points of each letter ’sit’ on a

different bottom line). If three regions are used the estimate

is more accurate (see Figure 3b). This fact is exploited by

the verification function v̂3(r1, r2, r3) which creates a word

text line estimate τ for given triplet and then verifies that the

estimate is valid (mutual vertical distance of the text lines is

constrained based on thresholds created during training) and

that distance of all three regions from τ is within an interval

obtained in a training stage. The recall of after applying the

v̂3 function is 87% and 37% of region pairs are pruned out.

The concept of word text lines was used for baseline

estimation in printed document analysis [11] and was also

applied to text localization in [12]. In the proposed method,

only triplets of regions are always used to infer these

parameters, in contrast to previous methods where these

parameters are estimated on whole words.

As demonstrated in Figure 3b, increasing the number of

regions in a sequence does not significantly improve the

estimate, which suggests that the geometrical parameters

of the word apply to all its subsequences as well. Based

on this observation, the verification functions v̂4, . . . , v̂n are

approximated by verifying that the text line parameters of

all subsequences of length 3 are consistent:

v̂L(s
L) = 1 ⇐⇒ ∀s31, s

3
2 ⊂ sL : d(s31, s

3
2) < θ (4)

The distance d(s31, s
3
2) of two triplets (see Equation 5) is

defined as the largest normalized vertical difference of their

text line parameter estimates τ at their boundary points. The

function v̂L(s
L) accepts the sequence s if distance between

all triplets in the sequence s is below a threshold θ, which

is a parameter of the method obtained during training.

Only the smallest distance is taken into account for top

lines as some triplets may contain incomplete set of text

lines - for instance in the word “Bear” the triplets “Bea”,

“Bar” and “Ber” have two top lines because of the capital

letter “B”, whereas the triplet “ear” has only one top line,

which can match to any of the two top lines in the remaining

triplets. The same argument applies to bottom lines (e.g.

“space”) and the two situations can even occur at the same
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Figure 5. Exhaustive search for text (sub)sequences. Each sequence is
displayed by its region centroids (with random noise to avoid overlapping)

time (e.g. “Gray”), however a bottom line is never matched

to a top line or vice-versa.

d(s31, s
3
2) = d(τ1, τ2) =

max

(

min
i,j=1...2

δ(ti1, t
j
2), min

i,j=1...2
δ(bi1, b

j
2)

)

(5)

δ(a, b) =
max (|a(x)− b(x)|, |a(x′)− b(x′)|)

h

x = min(xmin
1 , xmin

2 ) x′ = max(xmax
1 , xmax

2 )

h = max(h1, h2) (6)

In order to overcome low recall of the v̂1 function, the

text localization is performed twice: in the first run, all

verification functions are taken into account to build initial

text line hypotheses. In the second run, v1 is forced to 1
and only existing text line hypotheses are taken into account

(using the hypotheses-verification framework [6]). The recall

of v̂2, . . . , v̂n is not as crucial as one region can be present

in multiple subsequences.

The verification function approximation does not guaran-

tee that one region is an element of one sequence only. If

this situation occurs, the longer sequence is selected and

the other conflicting sequences are discarded. This can be

seen as a voting process where each sequence votes for

its direction and the most significant direction wins. This

process effectively eliminates false positives which are not

consistent with text line direction (see Figure 5, bottom-

right). Let E ′ denote a set of estimates E without conflicting

sequences.

In the proposed method, only sequences longer than 3

Table III
TEXT LOCALIZATION (TOP) AND RECOGNITION (BOTTOM) RESULTS ON

THE ICDAR 2003 DATASET

method precision recall f

proposed method 0.65 0.64 0.63

Hinnerk Becker [14] 0.62 0.67 0.62
Alex Chen [14] 0.60 0.60 0.58

Neumann and Matas [6] 0.59 0.55 0.57

proposed method 0.72* 0.62* 0.67*
Epshtein et al. [5] 0.73* 0.60* 0.66*

Pan et al. [4] (0.71) (0.67) N/A
Zhang et al. [7] (0.73) (0.62) N/A

method precision recall f

proposed method 0.42 0.41 0.41
Neumann and Matas [6] 0.42 0.39 0.40

regions are accepted because of the low individual precision

of the v̂1 and v̂2 functions and the inability to utilize the

text line geometric features with individual characters or

character pairs.

III. EXPERIMENTS

The proposed method was evaluated on the most cited

ICDAR 2003 dataset [13], which contains 249 images with

text of varying sizes and positions.

The standard evaluation protocol defined in [13] was used.

The protocol uses words as the unit for comparison, where

bounding boxes of words output by the evaluated method E
(estimates) are compared to the ground truth T (targets). The

protocol uses the notion of a flexible match of a region r in

a set of regions R as m(r,R) = maxr′∈Rmp(r, r
′), where

mp(r, r
′) denotes the area of intersection divided by the area

of the minimum bounding box containing both rectangles.

Precision and recall of text localization are defined as

pl =

∑

re∈E
m(re, T )

|E|
rl =

∑

rt∈T
m(rt, E)

|T |
(7)

and a standard f-measure is used to combine both figures.

All performance measures are calculated on each image

independently and then an average value over all images is

taken as performance of the method. The proposed method

achieves precision of 0.65 and recall of 0.64, which outper-

forms the existing methods as shown in Table III.

This performance measure was used in the ICDAR 2003

and 2005 competitions [13], [14], however papers presented

later deviate from the original performance measure. In [5],

only one precision and recall value over the whole set of

estimates and targets is calculated (marked with an asterisk

in Table III for comparison), which gives higher weight to

images with more words, which typically leads to better

results on the ICDAR dataset as the more challenging images

in the dataset contain only small number of words. Other

papers [7], [4] use whole text lines for evaluation, so direct

comparison is not possible (results given in parentheses in

Table III).

The localization output of the proposed method was

passed to recognition modules of the hypotheses-verification
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YAMAHA

(0.83, 0.83; 1, 1)
ZANUSSI

(0.96, 0.96; 1, 1)
LLOYDS BANK

(0.80, 0.80; 1, 1)

MAYFAIR

UDX

MINI

(0.88, 0.88; 1, 1)

AFCA

Foster Care ←֓
Asscciates

(0.57, 0.65; 0.20, 0.25)

EAST COURT HOUSE

(0.88, 0.88; 1, 1)

HSBC

(0.86, 0.86; 1, 1)
EXIT

(0.94, 0.94; 1, 1)
CANARY WHARF STATION

(0.89, 0.89; 1, 1)

Figure 6. Text localization and recognition examples on the ICDAR 2003
dataset. The performance measure has the format (pl, rl; pr, rr). Notice the
low number of false positives despite textures in the images and robustness
against blur and reflections. Incorrectly recognized letters marked red

CO ditions

(0.38, 0.57; 0, 0)
MIRN8Ff

(0.83, 0.28; 0, 0)
(0, 0; 0, 0)

Figure 7. Limitations of the proposed method. Reflection of a flash is too
strong so the letter “n” is not detected as an MSER (left). An unsupported
text line shape and letters written on glass not detected as MSERs (middle).
Multiple letters joint into one region (right)

framework [6]. Table III shows text recognition precision

(pr) and recall (rr), which are only slightly improved over

the previous method, because the text recognition evaluation

uses very strict metric, so even a significant improvement in

text localization does not guarantee that significantly more

words will be recognized without any mistake.

IV. CONCLUSIONS

An efficient method for text localization in real-word

images was introduced. It was demonstrated that suitable

selection of verification functions that control the grouping

allows exhaustive search of the space of all character se-

quences to such an extent that the text can be localized and

recognized in real time. The method exploits higher-order

features, which significantly improves its performance and

accuracy.

Additionally, the method includes a novel selector of

MSERs which thanks to exploiting region topology allows

using lower margin for detection, which improved individual

character detection rate from 84.0% to 95.7% without any

impact on calculation complexity.

On the highly cited ICDAR dataset [13], the method

achieved precision of 0.65 and recall of 0.64 which rep-

resents state-of-the-art results in text localization. The pre-

cision 0.42 and recall 0.41 of text recognition is also better

than our previous method, however the improvement is only

marginal as recognition modules are identical to [6]. On a

standard PC, the text localization and recognition took on

average 830ms per image on the ICDAR dataset (200ms on

average for 640× 480 images).
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