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Abstract—In order to spot the digits in a handwritten 

document, each component is sent to a classifier. This is a time 

consuming process because a document usually contains 

several hundred components. A method is presented to reduce 

the number of candidate components from a handwritten 

document sent to the classifier. Furthermore, since the 

classifier does not contain a rejection class, this led to several 

misclassifications. To lessen this, a verification post processing 

module was developed in order to reject some false positives. 

We reached an overall precision of 80% and 83.3% recall on 

our test set of handwritten documents. 

I. Introduction 

In the paper [1], the authors presented a word spotting 
technique to spot words in handwritten Urdu documents. In 
this paper, we propose a similar methodology but are more 
concerned with finding the digits 0…9 and some special 
symbols (“@”, “/”, and “#”) in a handwritten Arabic 
document. Digit spotting has its own set of challenges to 
overcome as we address these issues in our methodology and 
explain how we overcome them.  

Generally, a digit spotting method involves a 
segmentation routine working in concert with a classifier. 
As the segmentation module finds a connected component, 
it sends it to the classifier for identification. If the classifier 
returns a successful classification, that result will effectively 
signal that that component is one of the target classes. 

Several problems arise from this methodology. As a 
handwritten document can contain several hundred 
connected components, this can lead to a very slow system 
since the classifier is usually the slowest module in the 
system. Secondly, some classes are very similar in shape 
and form to non-target classes (i.e. the digit “1” with the 
letter Alif). Lastly, if the classifier does not contain a 
rejection class, this will cause several misclassifications, 
which are undesirable. 

The remainder of this paper describes the goal and 
challenges of our research in digit and symbol spotting. This 
is followed by the procedures implemented to reduce the 
number of candidate components sent to the classifier and 
how we compensate for the lack of a rejection class. This is 
followed by our results from some handwritten documents 
written by unknown writers. We end by discussing our 

conclusions and future work that can be done to our system 
in order to improve results. 

II. Objectives and Challenges 

The goal of our digit and symbol spotting system is to 
locate and recognize the digits and some special symbols in a 
handwritten document. We developed our system for five 
languages (Arabic, Dari, Farsi, Pashto, and Urdu). However, 
in this paper we will focus our discussion on Arabic since the 
procedure and results are similar with the other languages. 
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Figure I: Digit and Symbol Spotting Target Classes 

Figure I shows our target classes for digit and symbol 
spotting in a handwritten document. Documents can contain 
digits, symbols, words, and other components which do not 
belong to our target classes. 

The challenges encountered with such a task include 
excluding those components in a document that look similar 

to a target class, but are not.  For example, the digit one ( ) 
is similar in shape and form with the characters “/”, “\”, “(“, 

“)”, “[“, “]”, “{“, “}”, “|”, “!”, and Arabic character Alif ( ).  
The Alif character poses the biggest difficulty because it 
occurs very frequently in Arabic text. Also, the digit five (

) is very similar to the character hey ( ). Our pruning 
module (described in the next section) filters out most of the 
unwanted components. 

The classifier we used was described in [2]. This 
classifier was trained and tested on the CENPARMI Arabic 
Digits Database [3] which is a database of isolated digits 
and symbols. The classifier is used as part of the spotting 
system. However, because of the slower speed of the 
classifier, sending every connected component to it resulted 
in a very slow system. Therefore, our pruning module 
filtered out those unlikely candidates thereby speeding up 
the overall system. 

Another characteristic of the classifier was that when it 
was trained and tested, it was not given unseen data and 
therefore, a rejection class was unnecessary.  This caused 
several misclassifications from spotting since generally, the 
majority of the candidate components in a document do not 
belong to any of our target classes. Therefore, we required a 
type of rejection to compensation for this. Our solution was 
to build a verification module which accepts or rejects the 
classifier output based on features that were extracted from 
the CENPARMI Arabic Digit Database [3]. 

III. Methodology 

The flowchart of our overall system is shown in Figure 
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II. The preprocessing performs noise removal, document 
skew correction, and line detection. This is followed by a 
module which finds all the connected components in the 
document. This includes larger base components as well as 
the diacritics. All the connected components are sent to the 
pruning module (described in Section III-A).  
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Figure II: Digit/Symbol Spotting Application Flowchart 

Components that the pruning module does not filter out 
are sent to the classifier for recognition. Of these, those 
components which have a high classifier confidence are 
then sent to the verification module (described in Section 
III-B) to provide a final decision on the spotted components. 

A. Pruning 

The primary function of the pruning module is to reduce 
the number of candidate words that are sent to the classifier. 
Additionally, it contains rules to handle the special cases to 
distinguish between the digit one and the components 
similar to it and with the digit and five and the letter hey. 

Pruning was done by comparing statistical features 
obtained from our training set with the same features 
extracted from the candidate component. The training set 
we used is the CENPARMI Arabic Digits Database [3]. 
Similar pruning modules were created by using 
CENPARMI training data for Dari [4], Farsi [5], Pashto [6], 
and Urdu [7] for documents written in those languages. 

We created 40 heuristics that were created from 
statistical features we extracted from the training set and 
from line positional information we extracted from 
handwritten training documents. Examples of features 
include number of end points, number of intersection points, 
width, height, and density.  For dimensional features such as 
width, we compare the width of a component to the average 
width of all the components that reside on the same line. 
This was done to provide a more dynamic method to 
remove unlikely candidates. It has the advantage of 
conforming to a test subject’s handwriting style.  

Information we extract from the training set are lower 
and upper bound values of structural features such as 
width/height, density of black pixels, texture information, 
etc. For example, one heuristic compares the width/height 

ratio of the classes. The width/height ratios of all our 
training samples are calculated as well as the following 
values: 

���� = ��� 	 
���ℎ�
ℎ���ℎ��

� , ���� = ��� 	 
���ℎ�
ℎ���ℎ��

� ,      ��� � = 1 … �  
 
For Arabic, we obtained the values rmin = 0.01613 and 

rmax = 11.2174. We use these values to prune out 
components unlikely to be a target class. For each candidate 
component, we calculate its width/height ratio, rcand, and 
then compare it with the training values. For this heuristic, if 
rcand < rmin or rcand >rmax, then this heuristic would reject the 
candidate. A final decision has not been made on the fate of 
this component since we have 39 other heuristics to 
evaluate. 

Note that we do not perform normalization because we 
want to preserve the original handwritten aspect ratios of the 
writer’s handwriting. 

Another heuristic compares the width of a component 
with the average width of all the components on the same 
line it resides on. In this case, we do not use the isolated 
database as the previous heuristic, but we use full page 
handwritten documents for training. 

From this training set, we locate the target class 
components in the documents. For each of the components, 
we find their minimum and maximum ratios of the width 
over the average width. The average width is computed 
from those components on the same line only. This was 
decided because people tend to write smaller or larger based 
on how many words are on a line.  For digits we obtained a 
lower bound of 0.1682 and an upper bound of 2.7543. This 
means that for a potential candidate with width w, and if the 
average width of all the components on the line it resides on 
is wavg, then we compute the ratio r = w / wavg. This heuristic 
will reject the candidate if r<0.1682 or r>2.7543.   

For the structural features such as intersection points and 
end points, we determine these values based on the skeleton 
image of the connected component. The CENPARMI 
isolated digits were used to obtain these lower and upper 
bounds.  

For positional features, the full page handwritten training 
documents were used to find vertical positions of the target 
components based on landmarks of the line it resides in. 
Some positional ratio features include top/midline, 
bottom/midline, top/baseline, and bottom/baseline.  Both the 
midline and the baseline are reference values and the ratio 
measures the vertical position of the component with respect 
to the landmark lines as seen in Figure III. 

Once all the heuristics have been evaluated, we send the 
results to a rule which decides if the candidate will be 
pruned out or not. This is based on a subset of heuristics 
which we found to be optimal when they were evaluated 
using our validation documents. Out of the 40 heuristics, 18 
were chosen as useful for pruning. The others were useful 
but were not included for reasons such as redundancy or 
similarity with an existing heuristic. The rule will fail if any 
one of the heuristics is false (i.e. if a heuristic rejects the 
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candidate). If the rule fails, we prune out the candidate from 
further processing.  

 

 
Figure III: Positional Pruning Heuristics 

The candidates that pass the rule will be sent to the 
special pruning sub function which will identify pruning 
cases such as the colon symbol, symbols which are similar 
to one (i.e. Alif, “[“, …), or components which pass the 
pruning rule but cannot possibly be a digit or symbol 
because of its location or position with respect to its 
neighbouring components. These special cases are not 
represented in our set of 40 heuristics, so we must identify 
them separately. Once a candidate passes this step, it is sent 
to the classifier for recognition. 

We did not use a classifier such as a neural network or 
SVM because our goal was to avoid using our classifier 
(SVM) as much as possible because of the slower speed. 

B. Verification Module 

Since our classifier does not have a rejection class, we 
created a verification module which takes the classifier 
output and determines if the recognized result is likely 
correct. We want to reduce the false positives originating 
from the classifier.  Similar to the pruning module, we 
extracted structural features from our CENPARMI isolated 
digits and symbols. However, in this case, we built models 
for each individual class because we now need to verify a 
specific class. 

The verification module is based on several features 
such as 8-directional freeman chain codes [8], image 
difference, and other structural features. 

Chain codes are features that give a description or shape 
of each connected component. We used the CENPARMI 
isolated training digits and symbols in order to match the 
target sample with its respective class. To compare the 
candidate chain code with the trained target class chain 
code, the Mahalanobis distance [9] measurement method 
was used.  

A modified Zheng-Suen [10] skeletonization method 
was used to generate a skeleton of each image. The chain 
code algorithm starts from the top right pixel and traces 
along a sequence of skeleton pixels based on counter 
clockwise eight directions. The direction of each pixel ‘P’ 
was encoded by numbers (1, 2, 3, ... 8), as shown in Figure 
IV. 

 

 
Figure IV: Eight Directional Freeman Chain Code 

A skeleton image of an Arabic digit 2 is shown in Figure 
V. 

 
Figure V: Skeleton Image of an Arabic Digit ‘2’ 

The chain code tracing for small portion of skeleton 
image of above image is shown in Figure VI.  
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          Figure VI: Chain Codes for Small Portion of Figure V 

After creating the chain code from each image, a 
histogram of each direction was acquired and is shown in 
Table I.  The first row represents the directions and the 
second row represents the power of each direction. 

TABLE I: CHAIN CODE DIRECTION HISTOGRAM 

Direction: 1 2 3 4 5 6 7 8 

Strength: 18 0 0 0 7 21 11 7 

 
Once the histogram of directions for each image in the 

training set was created, the Mahalanobis distance 
measurement was used for accepting or rejecting any 
candidates.  Mahalanobis distance measurement [11] [12] is 
based on the correlation between variables and it is very 
efficient for determining the similarity of an unknown data 
set to a known one. The Mahalanobis distance ‘r’ between 
test sample x=(x1, x2, x3, ... xn) and the mean of known 
samples µ  = (µ1, µ2, µ3, ... µn) is given by: 

 

r =  �(x − μ)"∑$% (x − μ)                      (1) 

 
where ‘∑

-1
’ is the inverse of the covariance matrix ‘∑’ of 

known samples and the size of covariance matrix is n × n. 
The symbol ‘t’ represents the transpose. 

In our experiments, the size of a covariance matrix was 
8x8. For each image in the CENPARMI digit and symbol 
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training set, a histogram of chain codes was created. This 
resulted in matrices of histogram features. A mean vector 
(µ) was created for each class by taking the mean of each 
column from the feature matrix of that class. A covariance 
matrix was also created for each class from that histogram 
feature matrix. After obtaining the covariance matrix ‘∑’ 
and the mean vector (µ), each target sample was tested with 
its respective known class. A threshold value was obtained 
from the training samples in order to reject or accept the 
target sample. If the distance is greater than a predetermined 
threshold, we reject the classifier output class. 

In addition to the chain code feature, we also include a 
few structural features used to verify the output. The 
features used are number of endpoints, number of 
intersection points, and number of loops in the skeleton 
image. Even though we used endpoints and intersection 
points in the pruning stage, here we calculated these values 
for each specific class whereas we calculated the values for 
the entire set of classes as a group for pruning. 

TABLE II: ACCEPTABLE STRUCTURAL VERIFICATION VALUES/CONDITIONS 

Class Endpoints Intersection Points Loops 

2 2,3 0,1 0 

3 3,4  0 

6   0 

7  0,1,2,3 0 

8   0 

#  4 1 

0 
a. Position must not be above any other component. 

b. If it is the last component in a line, it is preceded by a digit. 

1 
a. Must have at least one neighbouring digit. 

b. If it is first component in a line, the next symbol is a colon. 

/ 

a. Must not be first or last component in a line. 

b. Must neighbour at least one digit. 

c. Must not contain two smaller components within its 

bounding box. 

Any 
a. Classifier confidence greater than a threshold. 

b. Chain code distance below threshold 

 
End points and intersection points were extracted from 

the skeletons and loops were obtained from the chain codes 
and a minimum and maximum bound of acceptable values 
were determined for each class. 

These features had great improvement in rejecting 
misclassifications between the ambiguous digits two and 
three. In addition, results for the pound sign, which was 
misclassified with other symbols/letters, was improved 
upon. Heuristic acceptable values and acceptable conditions 
for these classes are shown in Table II. 

If the candidate does not comply with any one of these 
heuristics, it is rejected. The class “1” had strong rejection 
conditions because of the high confusion with the letter Alif, 
the slashes “\” and “/” as well as the bracketing symbols 
(“{“, “}”, “(“, “)”, “[“, “]”). For zero, it should not be above 
any other component in order to avoid classifying small 
diacritics as that digit. The classifier does not use positional 
features so the verification module compensates for this. 

IV. Results 

Figure VII shows a magnified section of one of our 
sample documents where the spotted classes are highlighted.  

We can see in Figure VII that most of the classes were 
spotted and several false components were rejected by the 
verification stage. We can see that several Alif characters 
that were accepted by the classifier, have now all been 
rejected by verification as well as the “(“ and “)” 
components on the first line. Three of the colons “:” were 
removed from consideration by the pruning module. The 
other one was not because the two components that make up 
the colon were not overlapping enough to be pruned out. 
The components of that colon were classified are zeroes. 

 

 
Figure VII: Highlighted Spotted Digits and Symbols 

Unfortunately, we did encounter a few false negatives 
such as the first “#” in the second line.  The touching digits 
component “23” in the second line was properly pruned out 
because that component did not comply with any of the 
pruning heuristics. The third line contains the digit “1” that 
was rejected because of a low classifier confidence value 
(0.40). Next to it, the digit “9” was rejected because the 
chain code distance (18.1) was greater than the threshold 
(2.0). 

 

 
Figure VIII: Verification False Positives (Components 7 and 9) 

In Figure VIII, two digits were filtered out by the 
verification module. Component 7 was rejected by the 
verification module because the classifier (incorrectly) 
recognized it as the digit “2”. The features for this 
component did not match the verification model for the digit 
“2”, so therefore, the verification module rejected it.  The 
“9” was rejected because the distance between the 
component chain code feature and the chain code model for 
“9” (3.28) exceeded the threshold (3.00). Therefore, the 
verification module rejected it. The zero (component 8) and 
the three (component 10) were correctly passed by pruning, 
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were correctly classified, and accepted by the verification 
module. The other non-target class components were 
rejected by verification. 

One limitation of our system is that it expects all the 
components it receives to be in Arabic. When a document 
contains non-Arabic text as in Figure IX, it will process it 
without language identification. We can see the English 
letter “o” was classified as class “5”. The full-stop was 
recognized as zero and the “c” as the digit “2”. 

 

 
Figure IX: Results from Non-Arabic Text 

We tested on two Arabic handwritten documents. 
Results for our entire combined system (pruning, 
classification, and verification) are shown in Table III. The 
writers for these test documents are not represented in our 
isolated digits/symbols training database or in our 
handwritten training documents. 

The high true negative rate is an indication of (mostly) 
the pruning module and little bit of the verification module 
(since fewer candidates reach the verification step). This 
also accounts for the high accuracy rate. We have high 
precision and recall for the second document and overall, 
we have a very good result of 80% precision and 83.33% 
recall. Note that results were a bit higher before we added 
the verification module which has the job to reject. That 
includes, sometimes, rejecting some true positives. We 
prefer to reject rather than misclassify and overall, the 
verification module rejected more true negatives than true 
positives. Our results for the other languages are similar. 

V. Conclusions 

We have shown that we have developed a very robust 
digit and symbol spotting system by incorporating a pruning 
module, a classifier, and a verification module. Together, 
the three components generated a high overall result when 
tested on documents written by writers that were not trained 
on.  

The limitations that we found were that the system does 
not recognize touching digits. They are correctly pruned out 
however since the component does not conform to any 
trained target class model - which is an isolated digit or 
symbol.  

Future work can include identifying touching connected 
components and determining if one or both (or all) of them 
belong to one of our target classes. Furthermore, even 
though the symbols that were chosen are those that occur 
frequently in financial documents, we can add more 
symbols to our target set. Finally, we believe that better 
results can be achieved if we train on more documents. The 
current system was trained on only three documents, yet 

performed respectively. This is especially true for positional 
features that were extracted only from the documents and 
not the training set of isolated digits/symbols. By adding 
more training documents, we can possibly identify more 
circumstances for pruning and rejection. 

 
TABLE III: ARABIC HANDWRITTEN DIGIT/SYMBOL SPOTTING RESULTS 

 D4_W2 D5_W7 Overall 

Target Classes: 20 54 74 

Candidates: 523 529 1052 

True Positives (TP): 10 50 60 

True Negatives (TN): 495 470 965 

False Positives (FP): 8 7 15 

False Negatives (FN): 10 2 12 

Precision: 55.56% 87.72% 80.00% 

Recall: 50.00% 96.15% 83.33% 

True Negative Rate: 98.41% 98.53% 98.47% 

Accuracy: 96.56% 98.30% 97.43% 
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