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École Polytechnique de Montréal
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Abstract—An analysis of the quality of on-line handwritten
signatures is carried out based on the Sigma-Lognormal model.
In the study, two main issues are addressed from a kinematic
perspective of humanly-produced movements. On the one hand,
what makes some signatures perform better than others in
automatic signature verification systems, and on the other
hand if that information may be used as a quality measure in
order to predict the expected performance of a given sample.
Experiments were carried out on the MCYT database and show
the high potential of certain kinematic features for signature
quality assessment.
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I. INTRODUCTION

Due to the fact that biometrics, as an automatic means

of human recognition, constitutes a relatively novel field of

research [1], most efforts undertaken by the different parties

involved in the development of this technology (researchers,

industry, evaluators, etc.) have been mainly (but not exclu-

sively) directed to the improvement of its performance (i.e.,

finding ways to obtain lower error rates)[2], [3]. This has

left partially uncovered other important aspects involved in

the complex biometric recognition problem.

In particular, it has not been until recently when biometric

quality assessment has emerged in the biometric commu-

nity as a primary field of research, as a consequence of

the concern arisen after the poor performance observed in

different biometric systems on certain pathological samples

[4]. Different studies have proved that biometric systems

performance is heavily affected by the quality of the input

signals, and that even the best systems worldwide struggle

in the presence of noisy samples [5], [6].

One of the main reasons that has led to a slow start in

biometric quality research is the intrinsic difficulty to clearly

define the term quality in the biometric context. Recent

standardization efforts [7] have established that biometric

sample quality can be considered from three different points

of view, namely: i) character, ii) fidelity, and iii) utility.

This last characteristic refers to the impact of the individual

biometric sample on the overall performance of a biometric

system and it is generally accepted that it constitutes the

most important aspect to be taken into account by a quality

metric [6] (i.e., samples assigned to a higher quality should

lead to a more accurate identification of individuals).

These standardization efforts have led to the proposal

of specific quality measures for certain traits such as the

fingerprint (where quality may be computed in terms of

the ridge strength, continuity, clarity, uniformity or integrity

[8]) or the iris (where quality is measured in terms of the

occlusion, the focus, the blurring or the angular deformation

[9]). However in behavioral biometric traits such as the

signature [10], the proposal of objective and practical metrics

for quality estimation is not an easy task. Although some

work has been carried out to try to propose indicators of the

quality of both on-line [11], [12] and off-line signature [13],

[14], there is still no general consensus on how the quality

of a signature should be measured.

In the present work, the term quality is considered from

the utility point of view in order to investigate the cause that

makes some signatures more suitable for automatic recogni-

tion than others. For this purpose, the Kinematic Theory of

rapid human movements [15], [16] and its associated Sigma-

Lognormal model are used to analyze the humanly-produced

features that differentiate well-performing on-line signatures

from those giving higher error rates. Furthermore, the work

also studies the possibility to use the intrinsic information

that lies behind the production of well-performing samples

to propose a set of measures that can help to predict

how a certain signature will perform in a given automatic

recognition system.

Reported results show that there is a direct connection be-

tween the human-based kinematic information present in the

single strokes of handwritten signatures and their behaviour

in automatic recognition systems, and that this information

may be used to estimate the expected performance of a given

signature in a biometric application.

The rest of the paper is structured as follows. The Sigma-

Lognormal model is reviewed in Sect. II. The database,

system used in the tests, and the experimental protocol are

presented in Sect. III. Results are given in Sect. IV, while

the conclusions are finally drawn in Sect. V.
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Figure 1. One sample of the best 5 performing users in MCYT (top row), and of the 5 worst performing users (bottom row).

II. THE SIGMA-LOGNORMAL MODEL

The Kinematic Theory of rapid human movements, which

was first introduced in [15], [16], relies on the Sigma-

Lognormal model to represent the information of both the

motor commands and the timing properties of the neuro-

muscular system involved in the production of complex

movements like signatures. Being a theory based on the

human writing behavior, its application to the analysis of

signature quality can bring some insight into the difficult

issue of what makes some signatures perform better than

others in automatic recognition systems.

The Sigma-Lognormal model considers the resulting

speed of a single stroke j as having a lognormal shape Λ
scaled by a command parameter (D) and time-shifted by the

time occurrence of the command (t0) [17].

|�vj(t;Pj)| = DjΛ(t− t0j ;μj , σ
2
j ) =

=
Dj

σ(t−t0j)
√
2π

exp{ [ln(t−t0j)−μj ]
2

−2σ2
j

},

where Pj = [Dj , t0j , μj , σj , θsj , θej ] represents the set of

Sigma-Lognormal parameters:

• Dj : the amplitude of the input commands.

• t0j : the time occurrence of the input commands, a time-

shift parameter.

• μj : the log-time delays, the time delays of the neuro-

muscular system expressed on a logarithmic time scale.

• σj : the log-response times, which are the response

times of the neuromuscular system expressed on a

logarithmic time scale.

• θsj : starting angles of the circular trajectories described

by the lognormal model along a pivot.

• θej : ending angles of the circular trajectories described

by the lognormal model along a pivot.

In this context, a signature can be seen as the output

of a generator that produces a set of individual strokes

superimposed in time. The resulting complex trajectory can

be modeled as a vectorial summation of lognormals (being

NLN the total number of lognormal curves in which the

signature is decomposed):

�v(t) = ΣΛ(t) =

NLN∑

j=1

�vj(t;Pj).

The reconstruction error of a velocity profile using the

Sigma-Lognormal parameters �v(t) can be evaluated by com-

puting the SNR between the reconstructed specimen and the

original one:

SNR = 10 log(

∫ te
ts

[v2xo(t) + v2yo(t)]dt
∫ te
ts

[(vxo(t)− vxa(t))2 + (vyo(t)− vya(t))2]dt
),

(1)

where ts and te are respectively the starting and ending

times of the signature, and the subindex o refers to the

original velocity profile (x or y) while a corresponds to the

reconstructed functions.

This fitness evaluation metric (SNR) will be used in the

experiments, together with the number lognormal curves

(NLN ) and the parameters defining each of those strokes

(Pj = [Dj , t0j , μj , σj , θsj , θej ]), to analyze the quality of

well- and bad-performing signatures.

III. EXPERIMENTAL PROTOCOL

In the experiments, the dynamic signature data of the

MCYT database is used (the whole multimodal corpus

comprises signature and fingerprint information of 330

users) [18]. The signature dataset comprises 25 original

samples and 25 skilled forgeries per user (captured in five

different acquisition sets). These data are used to estimate

the performance under a random forgeries scenario of a

state of the art HMM-based signature recognition system

(with 12 states and 4 mixtures per state) using as feature set

23 time sequences derived from the coordinate (x and y)

and pressure (p) functions of each signature [19], [20]. The

performance evaluation is carried out in a realistic working

scenario where a reduced number of samples (five) of each

user are available to train its model.
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Figure 2. DET curves of the HMM system evaluated on MCYT, and
on the best and worst performing 25 users of MCYT (MCYT-best and
MCYT-worst, respectively).

The set of genuine scores is computed matching the

enrollment data (five samples) with the last 20 original

signatures of the user resulting in 330 × 20 = 6, 600
similarity scores. For the impostor scores each user’s model

is compared with one signature of the remaining clients (i.e.,

330× 329 = 108, 529 impostor scores).

Skilled forgeries are discarded in the experiments as the

performance of a system under this scenario does not only

depend on the quality of the signature (utility), but also on

other factors such as the skill of the forger or the intrinsic

difficulty of the signature to be copied. These issues are out

of the scope of this work and have been addressed elsewhere

[21], [22], [12].

IV. RESULTS

The objective of the experiments is twofold, i) on the

one hand to look for the humanly-produced kinematic in-

formation which differentiates well-performing from bad-

performing signatures, and ii) on the other hand to determine

if that information may be used to predict a signature’s

performance on a given automatic recognition system.

In order to reach these two goals, two pools of clients

are chosen from the MCYT database comprising the best

(MCYT-best) and worst (MCYT-worst) performing users in

the database (in our case 25). In order to carry out the

selection, both the intraclass variability (reflected by the

genuine scores) and the interclass variability (responsible

for the impostor scores) of the clients should be taken into

account. Thus, the metric used to select the two sets of users

is computed as Q = Sg/Si, where Sg and Si are the average

of the genuine and impostor scores of each user, respectively.

In Fig. 1 one sample of the five best and worst performing

users in MCYT is shown (top and bottom row, respectively).

In Fig. 2 we show the Detection Error Trade-off (DET)

curves for the system evaluated on the whole MCYT

database and on the two sets of 25 best and worst perform-

ing users. It can be observed the significant difference in

performance between the two sets of clients with the Equal

Error Rate (EER) increasing almost by a factor three from

MCYT-best to MCYT-worst.

A. Experiment 1: Feature Analysis

In this first experiment we analyze the different kinematic

information comprised in well and bad performing signa-

tures. For this purpose, the Sigma-Lognormal 8-feature set

defined in Sect. II, FS = [D, t0, μ, σ, θs, θe, NLN ,SNR], is

extracted from each signature in MCYT-best and MCYT-

worst taking into account that the first six features are stroke-

based, while the last two (NLN and SNR) are related to the

whole signature. The individual distributions for each of the

parameters in the best (solid) and worst (dashed) sets of

users are shown in Fig. 3.

Several observations may be extracted from the results

shown in Fig. 3:

• Most of the kinematic information present in well- and

bad- performing signatures is almost the same (see

distributions for D, μ, σ, θs, and θe).

• The starting point of the strokes of signatures with a

good performance are in general closer to the begin-

ning of the signing process than those belonging to

signatures with a worse performance (see distribution

for t0). This characteristic (smaller t0) is typical of

shorter signatures and of signatures composed of better

learned movements (the commands for the start of all

the strokes are given very close to the start of the

signature).

• The distribution of the number of lognormals clearly

shows that the fewer the number of strokes the better

the performance of the signature, which is consistent

with having shorter samples as expressed in the previ-

ous observation, as well as a better fine motor control,

with no shaking.

• Finally, we may say that signatures that perform well

are better represented by the Sigma-Lognormal model

(their SNR is higher) than those with worse error rates.

B. Experiment 2: Performance Prediction

In this experiment we use the information extracted from

the previous test to predict the expected performance (good

or bad) of a given signature. With this objective the samples

in MCYT-best and MCYT-worst are parameterized accord-

ing to the three features that shown some discriminant power

between well- and bad-performing signatures in experiment

1 (i.e., t0, NLN , and SNR). The 25 samples corresponding

to the first 10 users from each set are then used to train a

Gaussian Mixture Model (GMM) of four mixtures, which

is later employed to classify the signatures of the remaining

15 users from each set. In order to avoid biased results, two
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Figure 3. Distributions of the Sigma LogNormal features for the best (solid) and worst (dashed) performing users in MCYT.

Table I
CLASSIFICATION ERROR RATES FOR WELL AND BAD PERFORMING

SIGNATURES OF THE FEATURE SUBSET [NLN , SNR]. FWR STANDS FOR

FALSE WORST RATE, FBR FOR FALSE BEST RATE AND ACE FOR

AVERAGE CLASSIFICATION ERROR.

Classification Error Rates (%)
FWR FBR ACE

6.5 18.3 12.4

fold cross-validation is carried out exchanging training and

test sets in two successive steps of the classification process.

It is possible that the best classifying results are not

obtained using the set of three proposed features (t0, NLN ,

and SNR), but a subset of them. As we are dealing with

a three dimensional problem there are just seven possible

feature subsets, which allows to apply exhaustive search as

feature selection technique. This process showed that the

optimal subset for classification was the one formed by the

NLN and SNR parameters, while t0 was discarded. The

classification results obtained with this scheme are shown in

Table I where FWR stands for False Worst Rate (a signature

of the best performing set is classified as not suitable for

recognition), FBR stands for False Best Rate (a signature

with a low performance is assigned to MCYT-best), and

ACE is the Average Classification Error (average of FWR

and FBR).

The results given in Table I show the feasibility of using

the proposed features as possible quality measures in order

to predict the expected performance of a certain signature in

a given automatic recognition system, and their high discrim-

inant potential which may be improved in combination with

other complimentary quality metrics such as the complexity

[12] or the stability [11] of the signature.

V. CONCLUSIONS

A study of the quality of on-line handwritten signatures

has been carried out based on the Kinematic Theory of rapid

human movements and its associated Sigma-Lognormal

model. Two main issues have been addressed in the work: i)
what humanly-produced dynamic information differentiates

well-performing from bad-performing signatures, and ii) if

that information can be used to predict the performance of

a signature on a given automatic recognition system.

The experimental results, carried out on the MCYT

database comprising over 16,000 signatures, have shown

that shorter signatures with better learned movements and

being very accurately modeled by the Sigma-Lognormal

features are more suited for personal recognition (i.e., they
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present lower error rates). Furthermore, two of the Sigma-

Lognormal parameters have proven a very high potential for

the a priori estimation of signature performance and have

been proposed as possible quality indicators of its utility
(from a recognition error rate perspective).

This type of quality assessment study has numerous appli-

cations in the context of biometric systems [6], for instance:

i) quality algorithms may be used as a monitoring tool [23];

ii) quality of enrolment templates and/or samples acquired

during an access transaction can be controlled for acquiring-

until-satisfaction purposes (recapture); or iii) some of the

steps of the recognition system can be adjusted based on

the estimated quality (quality-based adaptation [24], [25]).
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