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Abstract—Identifying unusual or unique characteristics of
an observed sample in useful in forensics in general and
handwriting analysis in particular. Rarity is formulated as
the probability of letter formations characterized by a set of
features. Modeling the distribution as a probabilistic graphical
model several probabilities are inferred: the probability of ran-
dom correspondence (PRC) as a measure of the discriminatory
power of the characteristics, conditional PRC associated with a
given sample and the probability of finding a similar one within
tolerance in a database of given size. Using the most commonly
occurring letter pair ”th” and characteristics specified by ques-
tioned document examiners, the highest probability formation
and low probability formations in a database are determined.
Computational issues in scaling the methods are discussed.
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I. INTRODUCTION

Much of automatic handwriting recognition is concerned

with determining the identity of a given letter or combination

of letters by learning from example data about different

forms encountered. On the other hand the goal of forensic

handwriting examination is to determine as to how unusual

a given structure or formation is so that it can be used to

identify the writer. While an unusual, or rare, handwriting

formation is central to identifying the writer, it is of little

consequence and even considered as noise in recognition.

More generally, questioned document (QD) examination

involves the comparison and analysis of documents, printing

and writing instruments in order to identify or eliminate

persons as the source. A facet of QD examination concerns

handwriting comparison which is based on the premise that

no two persons write the same way, while considering the

fact that the writing of each person has its own variabilities

[1], [2]. Individuals write differently both because they were

taught differently, e.g, Palmer and D’Nelian methods which

are called class-characteristics, and due to individual habits

known as individualizing characteristics. Examples of such

variations are seen in Figure 1. The uncertainties involved

in handwriting makes it a task suitable to be characterized

probabilistically.

Several types of probabilistic queries can be useful in the

examination of handwriting evidence: (i) the probability of

observed evidence, (ii) the probability of a particular feature

observed in the evidence, (iii) the probability of finding

the evidence in a representative database of handwriting

exemplars. As an example, in the field of DNA evidence

(a)

(b)

Figure 1. Samples of handwritten th of two writers showing two
different writing styles as well as within-writer variability.

a statement can be made that “the chance that a randomly

selected person would have the same DNA pattern as that

of the sample source and the suspect was 1 in 24,000,000”.

In the case of fingerprints a similar statement can be made

about the rarity of a particular minutiae pattern [3]. The

objective of this paper is to describe as to how such

probabilities can be computed for different letter formations

in handwriting.

QD examiners specify handwriting characteristics (fea-

tures) based on years of training [2]. However there have

been very few efforts to characterize the statistical charac-

teristics of such features, most notably [4]. On the other hand

there have been efforts to compute features automatically–

but the features tend to be gross approximations of the

characteristics employed [5], [6] or the features do not

correspond to human determined characteristics at all [7],

[8].While these automated methods perform well in ob-

jective tests they do not lend support to the document

examiner in testimony. Our goal here is to capture the

statistics of document examiner specified characteristics so

that a probability statement of rarity can be made as in other

forensic domains. The need for such quantitative testimony

in all of the forensic sciences has been underscored by a

recent National Academy of Sciences report [9].

II. FEATURES AND MEASUREMENT COMPLEXITY

Consider the example of the most commonly encountered

letter pair in the English language th; we consider a letter

pair rather than a single letter since it is likely to be more

individualistic. Characteristics for this letter pair as given

by document examiners [4] is given in Table I. Thus the

writing of th is characterized by a set of six features X =
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Table I
CHARACTERISTICS OF th AS SPECIFIED BY DOCUMENT EXAMINERS.

R = Height Rela-
tionship of t to h

L = Shape of Loop of
h

A = Shape of
Arch of h

C = Height of
Cross on t staff

B = Baseline of h S = Shape of t

r0= t shorter than h l0 = retraced a0 = rounded arch c0 = upper half of
staff

b0 = slanting up-
ward

s0 = tented

r1 = t even with h l1 = curved right side
and straight left side

a1 = pointed c1 = lower half of
staff

b1 = slanting down-
ward

s1 = single stroke

r2 = t taller than h l2 = curved left side
and straight right side

a2 =no set pattern c2 = above staff b2 = baseline even s2 = looped

r3 = no set pattern l3 = both sides curved c3 = no fixed pat-
tern

b3 = no set pattern s3 = closed

l4 = no fixed pattern s4 = mixture of
shapes

Figure 2. Bayesian network BNth: this graph together with
CPDs in Section III defines the probability distribution of the
characteristics of th.

{R,L,A,C,B, S} where R takes on four possible values

indicated by lower-case letters superscripted as r0, r1, r2, r3

and so on. The value is assigned to a particular writing

sample, which can consist of several instances of th, as

shown in Figures 1 and 4. For instance the three samples

in Figure 1(a) will be jointly encoded as r1, l0, a0, c3, b1, s2

and the samples in Figure 1(b) as r2, l2, a0, c1, b0, s2.

In the probabilistic formulation each characteristic is

considered to be a random variable. These six variables each

have multinomial distributions with 4,5,3,4,4 and 5 possible

values. If we assume that the variables are independent then

the number of independent probabilities (parameters) to be

estimated is 3+4+2+3+3+4 = 19. On the other hand if

we allow all dependencies, the number of parameters needed

is 4× 5× 3× 4× 4× 5− 1 = 4, 799.

When measurement complexity, i.e., the number of fea-

tures and the number of discrete values for each feature,

is increased the number of parameters needed grows ex-

ponentially making it impossible to have enough samples

to determine the necessary parameters. Furthermore, in a

classification scenario, when the sample size is fixed and

finite, the average error rate over all distributions increases

with measurement complexity [10].

Table II
MARGINAL DISTRIBUTIONS OF FEATURES OF th.

Value R L A C B S
0 0.23 0.69 0.41 0.53 0.11 0.09
1 0.37 0.05 0.44 0.28 0.1 0.61
2 0.16 0.006 0.16 0.008 0.49 0.02
3 0.24 0.08 - 0.18 0.29 0.05
4 - 0.17 - - - 0.22

Table III
CONDITIONAL PROBABILITY DISTRIBUTION P (S|R).

s0 s1 s2 s3 s4

r0 0.21 0.48 0.02 0.1 0.19

r1 0.04 0.68 0.04 0.05 0.2

r2 0.07 0.71 0 0.04 0.18

r3 0.05 0.57 0.02 0.04 0.31

III. PROBABILISTIC GRAPHICAL MODELS

The computational complexity and the need for samples

can be managed by exploiting statistical independencies that

exist between variables. Probabilistic graphical models are

useful to express such independencies [11].

A Bayesian network, BNth, for the distribution of the

six variables in Table I is given in Figure 2. It incorporates

causality such as: the shape of t (S) influences the shape of

h loop (L), the shape of h-arch (A) influences the baseline of

h (B), etc. This Bayesian network factorizes the distribution

of th into component conditional probability distributions

(CPDs) as

P (X) = P (R)P (L|S)P (A|L)P (C|S)P (B|R,A)P (S|R).
(1)

The CPDs are given in Tables II to VII, derived from data

discussed in Section V.

The number of independent parameters needed to specify

BNth is 3 + 16 + 10 + 20 + 15 + 36 = 100 which is far

fewer than 4, 799 to directly specify the distribution.

IV. INFERRING RARITY FROM MODEL

Given the probabilistic graphical model the inference

problem is that of evaluating probabilities of interest. For

a distribution P (X), the probabilities relating to rarity are
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Table IV
CONDITIONAL PROBABILITY DISTRIBUTION P (A|L).

a0 a1 a2

l0 0.47 0.39 0.14

l1 0.18 0.71 0.11

l2 0.67 0 0.33

l3 0.3 0.66 0.05

l4 0.27 0.42 0.31

Table V
CONDITIONAL PROBABILITY DISTRIBUTION P (L|S).

l0 l1 l2 l3 l4

s0 0.4 0.06 0 0.34 0.19

s1 0.8 0.05 0.01 0.04 0.11

s2 0.54 0.15 0 0.08 0.23

s3 0.59 0.03 0.03 0.17 0.17

s4 0.56 0.06 0 0.08 0.3

defined: PRC or the Probability of Random Correspondence,

nPRC or the PRC of at least one pair among n having the

same value, conditional PRC which is the PRC of a known

value Xs being found, and the corresponding conditional

nPRC among n such samples [12].

A. PRC

Probability that two independent, identically distributed

samples X1 and X2, each with distribution P (X), have

similar values is given by the graphical model in Figure

3(a). It is evaluated as follows:

ρ = P (z0) =
∑
X1

∑
X2

P (z0|X1, X2)P (X1)P (X2) (2)

where Z is an indicator variable which has the CPD in

Table VIII, also given by

P (z0|X1, X2) =

{
1 if d(X1, X2) ≤ ε

0, otherwise,
(3)

d measures the difference between its arguments and the

quantity ε represents as to how different two samples can be

while they are considered to correspond (be the same). For

instance ε = 0 represents the requirement that the two values

X1 and X2 are identical. If d is the number of characteristics

that are the same then ε = 1 would lead to X1 and X2 being

considered to be the same if they do not differ in more than

one variable.

Table VI
CONDITIONAL PROBABILITY DISTRIBUTION P (C|S).

c0 c1 c2 c3

s0 0.85 0.06 0.02 0.06

s1 0.47 0.37 0.01 0.15

s2 0.69 0.31 0 0

s3 0.83 0.1 0 0.07

s4 0.46 0.17 0.01 0.36

Table VII
CONDITIONAL PROBABILITY DISTRIBUTION P (B|R,A).

b0 b1 b2 b3

r0, a0 0.03 0.17 0.53 0.27

r0, a1 0.18 0.12 0.41 0.29

r0, a2 0.13 0 0.4 0.47

r1, a0 0.08 0.06 0.7 0.17

r1, a1 0.13 0.15 0.51 0.21

r1, a2 0.04 0.09 0.35 0.52

r2, a0 0.13 0.13 0.53 0.2

r2, a1 0.12 0.17 0.37 0.34

r2, a2 0.08 0.25 0.5 0.17

r3, a0 0.12 0.06 0.44 0.38

r3, a1 0.16 0.07 0.45 0.32

r3, a2 0.06 0.09 0.36 0.48

Table VIII
DISTRIBUTION OF INDICATOR VARIABLE Z : P (Z|X1, X2).

X1, X2 z0 z1

d(X1, X2) ≤ ε 1 0
d(X1, X2) > ε 0 1

The probability that among a set of n ≥ 2 independent,

identically distributed samples X = {X1, .., Xn}, some pair

have the same value within specified tolerance is given by

the graphical model in Figure 3(b). The nPRC, can be

written in terms of the PRC as

ρ[n] = 1− (1− ρ)
n(n−1)

2 . (4)

Note that when n = 2, PRC=nPRC. Since there are
(
n
2

)
pairs involved this probability can be much higher than

PRC. For instance, in the famous birthday paradox, while

the probability of a birthday (PRC) is 1/365, the value of

nPRC for n = 24 is 0.5.

B. Conditional PRC

The probability that given a specific value it coincides,

within tolerance, one in a set of n samples drawn from the

same distribution is given by the graphical model in Figure

3(c). Since we are trying to match a specific value it depends

on the probability of the conditioning value. It is smaller

than nPRC and can be lower than the PRC. The exact

relationship with respect to PRC depends on the distribution.

The conditional nPRC is given by the marginal probability

p(Z = 1|Xs) =
∑
X

p(Z = 1|Xs,X)p(X). (5)

In the case of identical match this can be shown to be

equivalent to

1− (1− P (Xs))
n (6)

.
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(a) (b)

(c)

Figure 3. Graphical models for inferring rarity: (a) PRC, the
probability of two samples having the same value, (b) nPRC, the
probability of some pair of samples among n having the same
value, and (c) conditional nPRC, the probability of finding Xs

among n samples.

V. RARITY EVALUATION

The CPDs for the network were computed from a data

base of handwriting samples that are representative of the

U.S. population [13]. The data for the CPDs are based on

automatically extracting th samples and then assigning to

each sample its characteristics manually using a tool with

the interface shown in Figure 4. There were 3,125 images

representing 528 authors, some of whom had just one sample

while some had upto 5. Results of inference using network

BNth are described next.

A. Discriminatory Power of th

The PRC as given by Eq. (2) with d(X,Y ) = 0, i.e., exact

match, was evaluated to be 2.62× 10−13. This value can be

used to compare the discriminative power of th to those of

other letters and combinations.

B. Highest and Lowest Probabilities

Probabilities assigned by BNth to each element in the

database was evaluated using Eq. 1. The highest prob-

ability assigned by the model is to the feature value

{r1, l0, a0, c0, b2, s1} with probability 0.0304. It corresponds

exactly to the features assigned to writer 100 in the

database whose writing is shown in Figure 5(a). The lowest

probability assigned is to {r2, l3, a2, c2, b0, s4} with value

7.2×10−8 which does not have a corresponding element in

the database. A low probability th is shown in Figure 5(b)

{r3, l1, a0, c2, b0, s1}.

Figure 4. GUI for determining the features for th exemplars of a
given writer: values are assigned manually using pull-down menus
for each feature.

(a) (b)

Figure 5. Examples of rarity evaluation: (a) the highest probability
th in data set, and (b) a low probability th.

C. Probability of Finding Match in Database

Conditional nPRC for the two writers were evaluated

using Eq. 6. Plots as a function of n for d(X,Y ) = 0 and

d(X,Y ) = 1 are shown for the two writers in Figure 6

considering exact match and with a tolerance of mismatch

in one feature. With n = 10 the probabilities of exact

match for the two writers were 0.041 and 3.1 × 10−11

respectively, and probability allowing one mismatch were

0.387 and 7.69× 10− 10.

VI. SUMMARY AND DISCUSSION

We have proposed a framework for evaluating the rarity

of handwriting formations to be able to make probabilistic

statements analogous to other forensic domains such as DNA

and fingerprints. Since the probability specification involves

the evaluation of a large number of parameters, we have

described how probabilistic graphical models can be useful.

Using document examiner specified features we constructed

a Bayesian network for a commonly encountered letter pair
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(a) (b)

Figure 6. Probability of finding matching entry in a database of size n for two cases: most common th and a rare case shown in Figure
5. Plots in (a) correspond to exact match, and (b) to match with one feature mismatch allowed.

th and showed how the number of parameters needed is

much reduced.

We have also described the inferences needed to calculate

rarity. They include evaluating the PRC , which is a measure

of the discriminating power of a given set of characteristics,

and the probability of finding it in a database of a given

size. In the evaluation of Eq. 2 the number of terms in

the summation was 4, 800 for the features described in

Table I. With increasing measurement complexity, e.g., with

full handwritten words represented by 1024 features [14],

approximate inference methods will be useful.

In the methods described, the Bayesian network BNthwas

manually specified. Since the number of possible letters and

letter combinations can be large it is useful to automate net-

work specification. Methods for automatically determining

Bayesian networks are: (i) pairwise hypothesis testing, and

(ii) searching the space of Bayesian networks (since this an

NP-hard problem approximate search is used).
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