
Symbol Knowledge Extraction from a Simple Graphical Language

Jinpeng LI, Harold MOUCHERE, Christian VIARD-GAUDIN

IRCCyN (UMR CNRS 6597) - L’UNAM - Université de Nantes, France

{jinpeng.li,harold.mouchere,christian.viard-gaudin}@univ-nantes.fr

Abstract—In this paper, we study the problem of symbol
knowledge extraction. We assume that some unknown symbols
are used to compose a handwritten message, and from a
dataset of handwritten samples, we would like to recover the
symbol set used in the corresponding language. We applied
our approach on online handwriting, and select the domain
of numerical expressions, mixing digits and operators, to test
the ability to retrieve the corresponding symbol classes. The
proposed method is based on three steps: a quantization of
the stroke space, a description of the layout of strokes with a
relational graph, and the extraction of an optimal lexicon using
a minimum description length algorithm. At the symbol level,
a recall rate of 74% is obtained on the test dataset produced
by 100 writers.

Keywords-online handwriting; knowledge extraction; mini-
mum description length; spatial relation;

I. INTRODUCTION

The knowledge of symbols which compose a given lan-

guage is something essential to recognize, and then to

interpret a handwritten message based on this language. For

this reason, most of the existing recognition systems, if not

all, need the definition of the character or symbol set, and

require a training dataset which defines the ground-truth at

the symbol level so that a machine learning algorithm can be

trained on this task to recognize symbols from handwritten

information. Many recognition systems take advantage from

the creation of large, realistic corpora of ground-truthed

input. Such datasets are valuable for the training, evaluation,

and testing stages of the recognition systems. They also

allow for comparison between state-of-the-art recognizers.

However, collecting all the ink samples and labelling them

at the stroke level is a very long and tedious task. Hence, it

would be very interesting to be able to assist this process,

so that most of the tedious work can be done automatically,

and that only a high level supervision need to be defined to

conclude the labelling process.

In this respect, we propose to extract automatically the

relevant patterns which will define the lexical units of the

language. This process is carried out from the redundancy

in appearance of basic regular shapes and regular layout of

these shapes in a large collection of handwritten scripts.

For the targeted application, which will be defined in

more details further and which is related to online numerical

expressions, we consider that the strokes, a sequence of

points between a pen-down and a pen-up, are the basic units.

Should this assumption not be verified, then an additional

segmentation process will have to be undergone, so that

every basic graphical unit, termed as a grapheme, belongs

to a unique symbol. Conversely, a symbol can be made

of one or several strokes, which are not necessarily drawn

consecutively, i.e. we do not exclude interspersed symbols.

Then, these units are composed with some specific com-

position rules, to produce a symbol of the language, this

symbol being an instance of a lexical unit.

The problem is to identify from a large collection of hand-

written scripts, all the lexical units based on the observation

of the strokes. Some of them corresponding directly to a

symbol, others are only a part of a symbol. Eventually, the

same kind of stroke according to the context will be either

a single symbol or a piece of a more complex symbol.

Let us illustrate the concept with a simplified example.

Assume that we observe only two kinds of strokes: hori-

zontal stroke and vertical stroke {‘−’, ‘|’}. In a first model,

consider also, that the only composition rule is the left to

Right rule (R). Then, it is possible to produce this kind

of string : “| − | | | − | | | − | | | ”. Based on all

the available strings in the training dataset, we would like

to be able to define a lexicon, i.e. a list of lexical units,

which will allow to describe in an optimal way the entire

corpus. With this example, two possible lexicons would be

L = {“| − |”, “|”} or L = {“| − | |”, “|”}. A similar

problem is studied in unsupervised language acquisition [1];

the lexicon is extracted from texts, considered as a sequence

of characters.

But suppose now, that we add two new composition rules:

the Below rule (B) and the Intersection rule (I). Then,

with these two-dimensional spatial relations in addition to

sequences of strokes, we are able to compose more complex

messages, such as “|+ | = ||”. In this case, the search space

for the combination of strokes which forms possible symbols

is much more complex since it is no longer a linear one.

We give an overview of the proposed system in section

II, then the extraction of the graphemes and of their spatial

relationships are presented in section III. We describe the

algorithm which is used to build the lexicon in section IV,

before presenting the experimental results in section V.

II. OVERVIEW

This section introduces the overview of the extraction

of lexicon. Given a handwriting database, Fig. 1 pictures

our scheme to extract the lexicon of symbols. This scheme

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.128

608

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.128

608

Database

2 3
|8

Graphemes
1.Quantization

Relational Graphs
Lexicon

B
=

B :Below
:Grapheme

2.Extraction of spatial relations

3.Extraction of lexicon

Clustering

2
38

|
|

8 8

Figure 1. Lexicon extraction overview

contains three principal steps, quantization of strokes, ex-

traction of spatial relations between strokes, and extraction

of lexicon.

First, we code each stroke using a finite set of graphemes.

This is a quantization step. The second step, extraction

of spatial relations, analyses spatial relations between the

strokes. For instance, “=” is composed of the two same

graphemes “−” with the spatial relation below “B” which

corresponds to the following subsequence (−, B,−).
These graphemes and spatial relations are organized in a

relational graph inspired by a symbol relation tree (SRT)

[2]. From the relational graph, the sequences containing

graphemes and spatial relations are extracted, they are next

processed by the third step, which computes the lexicon.

The main idea of the developed algorithm is to use the

frequency of subsequence of graphemes/relations to detect

symbols. If the subsequence (−, B,−) is very frequent, we

could consider (−, B,−) as a lexical unit. In fact, a lexical

unit usually represents a ground-truth symbol.

We mainly focus in this work on the problem from the

relational graph to the lexicon and its evaluation. Thus the

generation of the relational graph is briefly described.

III. EXTRACTION OF GRAPHEMES AND SPATIAL

RELATIONS

For the quantization of strokes, we firstly extract the

graphemes. Since the stroke is a sequence of points, we

apply the dynamic time warping (DTW)[3] distance as

the similarity of shape between two strokes. Clustering

techniques are used for the generation of the codebook.

Many different algorithms are available for this task. Instead

of using a traditional k-means algorithm, we prefer an ag-

glomerative hierarchical clustering since the tree topology is

favourable to tune easily the number of prototypes. Further-

more the Lance-Williams formula [4] provides an efficient

computational algorithm for hierarchical clustering. Once

the graphemes (prototypes) are selected with the hierarchical

clustering, all the strokes are tagged with the virtual label

of the closest grapheme using the DTW distance.

The second step extracts the spatial relations between the

strokes. We predefine three generic spatial relations, right

(R), below (B) and intersection (I). We choose the top-left

stroke as the first stroke to start. To build the relational graph,

we have considered from each node (stroke) the outcome

of at most 2 possible edges when relation B and/or R are

satisfied and only one edge when relation I (with a higher

priority) is encountered. In other words, I is exclusive with

R and B. The edges are oriented towards the nearest strokes

for the considered relation. In this way, we obtain a directed

acyclic graph (DAG). All the nodes in the graph can be

travelled by several possible paths (sequences). Thus given

a handwriting database containing expressions {ei}, it is

transformed into a set of sequences of graphemes/relations

{sqj}. This transformation bridges the gap between the

graph and sequences.

For example Fig.2 illustrates a DAG from an expression.

The graphemes are marked by the indices of strokes in

equation to avoid the ambiguity since several strokes share

the same grapheme. In this example, all the nodes in the

graph can be travelled by two possible paths (sequences),

(2(0), R, ..., −(4), R, �
(6), I , |(7)) and (2(0), R, ..., −(4), B,

−(5), R, �
(6), I , |(7)). In the next section, we explain how

to extract the lexicon from these sequences.

IV. EXTRACTION AND UTILIZATION OF THE LEXICON

We use the iterative algorithm proposed in [5] to build

the lexicon from the sequence of graphemes/relations. The

principal idea of this algorithm is to minimise the description

length of sequences by iteratively trying to add and delete

a word, in terms of Rissanen’s minimum description length

(MDL) principle [6]. The MDL principle means that the best

lexicon minimise the description length of the lexicon and

that of the observation; in our case the observation is the

sequence of graphemes/relations.

A. Extraction of the Optimal Lexicon

We describe a simple example inspired by [1] to give a

general idea of the minimum description length principle.

The aim is to find the lexicon [5] using MDL principle. We

analyse the expression “1234− 2/1234” as the sequence of

graphemes U = (1, 2, 3, 4,−, 2, /, 1, 2, 3, 4). For simplicity,

the spatial relations are omitted but they are taken into

R I

R R

R

B

I

R"="

"4"

"+"

R
B
I

:Right
:Below
:Intersection

:Grapheme

:Spatial Relation2
(0) (1)

| (2)
8

(3)

(4)
(6) (7)|

(5)

2 + 8 = 4(0)

(1)

(2) (3)

(4)
(5) (6)

(7)

:Segmentation

Figure 2. Example of relational graph of “2 + 8 = 4”

609609

account in the real algorithm. In Table I, we have three lexi-

cons, L1, L2 and L3 to interpret U by Viterbi representation

[1]. Intuitively L2 is the best lexicon since L2 contains the

word “1234”.

Considering the lexicon L2 = {(1), (2), (3), (4), (−),
(/), (1, 2, 3, 4)}, L2 has a hierarchical structure; (1), (2),
(3), and (4) compose the longer sequence (1, 2, 3, 4) defined

by (1) ◦ (2) ◦ (3) ◦ (4) = (1, 2, 3, 4) where ◦ is the

concatenation. The Viterbi representation is used to interpret

U by matching the longest sequence in L2 shown in Fig. 3.

For example, U is interpreted by L2 as (1, 2, 3, 4)◦(−)◦(2)◦
(/)◦(1, 2, 3, 4). C(.) is defined as the number of occurrences

on the level of coding of U and coding of L2. For instance,

C((2)) = 2 since “01” in “111 110 01 101 111” composing

U and “01” in “000 01 001 100” composing (1, 2, 3, 4),
shown in Table I. To find the number of occurrences, it

can be obtained by the out-degree of each member from

Viterbi representation in Fig. 3. The numbers of occurrences

of the other members are that C((1, 2, 3, 4)) = 2, C((1)) =
C((3)) = C((4)) = C((−)) = C((/)) = 1 from Viterbi

representation. According to the numbers of occurrences,

we encode U and L2 by Huffman coding which is minimum

redundancy [7]. Therefore we can get the description length

of U and L2. The description length of L2 is 25 bits which

is the minimum description length among the three lexicons.

An algorithm to build the optimal lexicon is presented

in [5] using MDL principle. We try to iteratively add or

delete a word in order to minimise the description length

until the lexicon cannot be changed. Thus we get an optimal

lexicon L on the training handwriting database containing

the sequences of graphemes/relations {sqj}.

Table I
THREE LEXICONS FOR THE SEQUENCE OF GRAPHEMES

U = (1, 2, 3, 4,−, 2, /, 1, 2, 3, 4)

L1 {(1), (2), (3), (4), (−), (/)}
Viterbi representation of U : (1) ◦ (2) ◦ (3) ◦ (4) ◦ (−)◦

(2) ◦ (/) ◦ (1) ◦ (2) ◦ (3) ◦ (4)
Huffman coding of U : 00 10 01 110 1111

10 1110 00 10 01 110

Code length of U and L1: 28 bits

L2 {(1), (2), (3), (4), (−), (/),
(1, 2, 3, 4)}

Viterbi representation of U : (1, 2, 3, 4) ◦ (−) ◦ (2)◦
(/) ◦ (1, 2, 3, 4)

Huffman coding of U : 111 110 01 101 111

Inner representation of (1, 2, 3, 4): (1) ◦ (2) ◦ (3) ◦ (4)
Huffman coding of (1, 2, 3, 4): 000 01 001 100

Code length of U and L2: 25 bits

L3 {(1), (2), (3), (4), (−), (/),
(1, 2, 3, 4,−, 2, /, 1, 2, 3, 4)}

Viterbi representation of U : (1, 2, 3, 4,−, 2, /, 1, 2, 3, 4)
Huffman coding of U : 1111

Inner representation (1) ◦ (2) ◦ (3) ◦ (4) ◦ (−)◦
(1, 2, 3, 4,−, 2, /, 1, 2, 3, 4): (2) ◦ (/) ◦ (1) ◦ (2) ◦ (3) ◦ (4)
Huffman coding of 100 00 101 01 1110
(1, 2, 3, 4,−, 2, /, 1, 2, 3, 4): 00 110 100 00 101 01

Code length of U and L3: 33 bits

U:

Figure 3. Viterbi representation

B. Segmentation Using Optimal Lexicon

Here we explain how to obtain a segmentation of a new

expression using the computed optimal lexicon L. A new

expression e is transformed into one or more sequences of

graphemes/relations from the relational graph, e → {sqk}.
We get the segmentation from the {sqk} by the Viterbi

representation with the optimal lexicon L. In fact, the

segmentation from {sqk} contains the spatial relations, I ,

R, and B. These spatial relations are used to define the

lexicon since (−, B,−) is different of (−, I,−), but are not

necessary for the segmentation of strokes. The segmentation

of the complete expression is the result of merging segmen-

tation from each path.

For example in Fig. 2, because of the two paths from

the relational graph, we get two sets of segmentation

in graph using the optimal lexicon, {(2(0), R),
(−(1), I, |(2)), (R, 8(3), R,−(4), R), (� (6), I, |(7))} and

{(2(0), R), (−(1), I, |(2)), (R, 8(3), R), (−(4), B,−(5)),
(R), (� (6), I, |(7))}. We simplify the segmentation

in graph by deleting the spatial relations. The

two sets of segmentation will be simplified as:

{{2(0)}, {−(1), |(2)}, {8(3),−(4)}, { � (6), |(7)}} and

{{2(0)}, {−(1), |(2)}, {8(3)}, {−(4),−(5)}, {� (6), |(7)}}.
The sequences are converted into sets since the link

between graphemes of spatial relations is missed. The

union of these two sets is the segmentation of the equation,

{ {2(0)}, {−(1), |(2)}, {8(3),−(4)}, {8(3)}, {−(4),−(5)},
{� (6), |(7)} }. We define this union of segmentations as

s(e, L) with the optimal lexicon L.

However there may be two members in s(e, L) which

are intersected but not included which means conflict. For

example, the two sets of {8(3),−(4)} and {−(4),−(5)}
conflict with −(4) noted by: CB({8(3),−(4)}, {−(4),−(5)}).
We call the conflict as CB since the brackets are crossing.

We solve this conflict by tracing back to C((8(3), R,−(4)))
and C((−(4), B,−(5))) in lexicon and by keeping the

bigger C(.) in sequences of graphemes/relations; the

other set is deleted. Probably we keep {−(4),−(5)} since

C((−(4), B,−(5))) > C((8(3), R,−(4))). Therefore we get

the segmentation for the equation in Fig. 2, { {2(0)},
{−(1), |(2)}, {8(3)}, {−(4),−(5)}, {� (6), |(7)} }.

We also make the segmentation as a hierarchical structure

from the hierarchical lexicon L. Finally we get the segmen-

tation defined by S(e, L) = {{2(0)}, {−(1)}, {|(2)}, {8(3)},
{−(4)}, {−(5)}, { � (6)}, {|(7)}, {−(1), |(2)}, {−(4),−(5)},
{� (6), |(7)}}. This hierarchical structure provides us with

610610

grammar information, i.e. {{� (6), |(7)}} → {{ � (6)}, {|(7)}}.
In a word, given a handwriting database {ei}, we trans-

formed {ei} to sequences of graphemes/relations {sqj} and

then extracted an optimal lexicon L from these sequences.

Considering a new expression e, we obtained the segmenta-

tion S(e, L) in terms of the lexicon L. At the end we cleaned

the conflict in segmentation and made the segmentation as

the hierarchical structure S(e, L).

C. Measures

Our objective is to verify if our extracted segmentation

correspond to a human made segmentation S(e,G) (ground-

truths). We evaluate the performance of segmentation with

lexicon L by four measures from [1]. The first is recall rate:

RRecall =
|S(e,G) ∩ S(e, L)|

|S(e,G)|
,

where |.| is the cardinality of a set. The recall rate evaluates

the percentage of right segmentation which are found in

ground-truths. On the contrary the second measure RCB

calculates the percentage of crossing brackets in S(e,G)
compared with the S(e, L). And RCB is defined by:

RCB =
|{A|A ∈ S(e,G), ∃B ∈ S(e, L), CB(A,B)}|

|S(e,G)|
.

RCB reveals the error of the segmentation of L com-

pared with ground-truths. The third measure is defined by

RLost = 1 − RRecall − RCB . RLost means the percentage

of segments (symbols) in S(e,G) which are not found.

Note that these 3 measures are because of the hierarchical

structure of the resulting segmentation. Thus we define a

fourth measure based on the segmentation found by the

Viterbi representation using the longest words:

RGood =
|{A|A ∈ S(e,G), ∃B ∈ Top(S(e, L)), B = A}|

|S(e,G)|

where Top(S) = {D|D ∈ S, ∀E ∈ S,E �= D,D �⊂ E}
which extracts a set of the longest possible segments without

inclusion. Thus RGood evaluates the performance of Viterbi

representation.

To explain the proposed measures, we use a new lex-

icon Lm giving the hierarchical structure segmentation

S(e, Lm) = {{2(0)}, {−(1)}, {|(2)}, {8(3)}, {−(4)}, {−(5)},
{� (6)}, {|(7)}, {−(1), |(2)}, {2(0),−(1), |(2)}, {8(3),−(4)}}
as illustrated in Fig. 4. The ground-truths are defined

by S(e,G) = {{2(0)}, {−(1), |(2)}, {8(3)}, {−(4),−(5)},
{� (6), |(7)}}. The recall rate is that RRecall = 3/5 = 0.6; the

ground-truths {2(0)}, {−(1), |(2)} and {8(3)} are found. The

crossing bracket rate RCB is 0.2 as the ground-truth {−(4),

−(5)} is crossing with the segmentation {8(3), −(4)}. RLost

is 0.2 since the ground-truth {� (6), |(7)} is lost. The RGood

is zero because none of ground-truth is found by Viterbi

representation. Although RGood is zero, the RRecall = 0.6
reveals some grammar information in expression, for in-

stance, {2+} → {{2}, {+}} and {+} → {{|}, {−}}.

2 + 8 = 4(0)

(1)

(2) (3)

(4)
(5) (6)

(7)

Figure 4. Example of measures

V. EXPERIMENTS

In order to validate our approach, we have produced a

dataset of handwritten numerical expressions from a large

set of isolated handwritten symbols, and we evaluate the

performance by the four measures presented in the previous

section.

A. Description of the Database

To test the performance of our approach, we created an

artificial database named Calculate[8]. Firstly the expres-

sions in Calculate are generated in terms of the grammar

N1 op N2 = N3 where N1, N2 and N3 are numbers

composed of 1, 2 or 3 digits from {0, 1, ..., 9}. The distri-

bution of number of digits for Ni={1,2,3} is 70% of 1 digit,

20% of 2 digits and 10% of 3 digits randomly. In addition,

op represents the operators {+,−,×,÷}. Fig. 5 shows an

example in Calculate that N1, N2, N3 and op contain 3

digits, 1 digit, 2 digits and “×” respectively.

Secondly Calculate is separated into a training part and

a test part. The training part contains 897 expressions from

180 writers for the unsupervised learning. On this part we

extracted the graphemes by clustering and extracted the

lexicon by the iterative search algorithm [5]. The test part

contains 497 expressions written by another 100 writers.

Learned graphemes and lexicon are tested on this part.

B. Results and Discussion

On the training part of Calculate, we firstly extract all

the prototypes of strokes (graphemes). To illustrate the

next step, we first select 150 prototypes. Then we evaluate

different numbers of prototypes. At the end, we evaluate the

performance of the optimal configuration on the test part of

Calculate.

Using 150 prototypes, we try iteratively to add and delete

a word with the lexicon in terms of the algorithm in [5].

The lexicon starts with 153 words (150 prototypes plus 3

spatial relations). At the end it stops at 498 iterations with

504 words since none of decrease of description length can

be made. Fig. 6 describes the accuracy of segmentation from

four measures, RRecall, RGood, RCB and RLost during the

unsupervised learning of the lexicon on the training part of

the database. The best accuracy RGood of 65% is reported

in the 20th iteration and then it decreases slowly. According

N
1

N
2

N
3

op =

Figure 5. A numerical expression from the Calculate database

611611

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of iterations

R
at

e

RecallRate
GoodRate
CBRate
LostRate

0.65

20

Figure 6. Accuracy of segmentation

to RCB and the overlap of RGood and RRecall, our system

does not make any error before the 20th iteration but it leaves

35% of symbols lost in terms of RLost. After 20th iteration,

RRecall keeps increasing until the end of iteration, but RGood

decreases gradually. It means that the new added word does

not represent symbols but frequent sequences of symbols or

of parts of symbol. At the end of iteration RRecall, RCB ,

RLost and RGood are 77%, 10%, 13% and 61% respectively.

To find the optimal number of prototypes of strokes, Fig.

7 shows the rates for different numbers of prototypes at the

end of the lexicon extraction; no more word can be added

and deleted. The best RRecall of 78% is reported using 120

prototypes (RCB = 10%, RLost = 12%, RGood = 62%).

RCB always decreases since more and more different pro-

totypes of strokes are found. RGood remains fluctuating

roughly around 60% after 75 prototypes. The compromise

best number of prototypes is 120 because of the high RRecall

and RGood and the low RCB and RLost.

Next we test the learned lexicon using 120 prototypes

of strokes on the test part of Calculate. RRecall of 74%,

RCB of 10%, RLost of 16%, RGood of 63% are reported.

RGood is comparable to that on the learning part. These

results show the robustness of our lexicon. In the field

of unsupervised learning on texts, the similar problem of

segmentation is studied a lot. Thus we compare the recall

rate in handwritten expressions with that in texts. Using the

same learning method of description length in [5], RRecall

of 90.5% and RCB of 1.7% are reported respectively on

an English corpus, Brown corpus [9]. Although our RCB

of 10% is much higher than that in texts, but we get a fair

RRecall of 74%.
VI. CONCLUSION

In this paper we presented an unsupervised learning

method of lexicon on simple handwritten mathematical

expressions. Firstly the graphemes are extracted by agglom-

erative hierarchical clustering. Secondly the graphs of spatial

relation are generated inspired by SRT, and these graphs are

transformed into sequences. We extracted the lexicon from

these sequences by reducing the description length.

At the end, we got a recall rate of 74% on the test

part of our database. Furthermore, the database Calculate

 15 30 75 120 150 225 300 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of prototypes

R
at

e

RecallRate CBRate LostRate GoodRate

Figure 7. Rates for different numbers of prototypes on the training part

is generated artificially from handwritten isolated symbols

written by different writers. The grammar of Calculate is

very simple and only one-line expressions exist. Therefore

if we increase the complexity of handwriting database, we

may need some new spatial relations. Then the relational

graph becomes more complicated and we will need some

graph mining techniques as for example in [10]. Hence,

more complicated graph languages like flowcharts could be

addressed in our future work.

Acknowledgment: This work is supported by the French

Région Pays de la Loire in the context of the DEPART

project www.projet-depart.org.

REFERENCES

[1] C. D. Marcken, “Unsupervised language acquisition,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1996.

[2] T. H. Rhee and J. H. Kim, “Efficient search strategy in
structural analysis for handwritten mathematical expression
recognition,” Pattern Recognition, vol. 42, no. 12, pp. 3192
– 3201, 2009.

[3] V. Vuori, “Adaptive methods for on-line recognition of iso-
lated handwritten characters,” Ph.D. dissertation, Helsinki
University of Technology (Espoo, Finland), 2002.

[4] G. N. Lance and W. T. Williams, “A General Theory of
Classificatory Sorting Strategies: 1. Hierarchical Systems,”
The Computer Journal, vol. 9, no. 4, pp. 373–380, 1967.

[5] C. D. Marcken, “Linguistic structure as composition and per-
turbation,” in In Meeting of the Association for Computational
Linguistics. Morgan Kaufmann Pub., 1996, pp. 335–341.

[6] J. Rissanen, “Modeling by shortest data description,” Auto-
matica, vol. 14, no. 5, pp. 465 – 471, 1978.

[7] D. Huffman, “A Method for the Construction of Minimum-
Redundancy Codes,” Proceedings of the IRE, vol. 40, no. 9,
pp. 1098–1101, Sep. 1952.

[8] A. M. Awal, “Reconnaissance de structures bidimensionnelles
: application aux expressions mathématiques manuscrites en-
ligne,” Ph.D. dissertation, Ecole polytechnique de l’université
de Nantes, France, 2010.

[9] N. W. Francis and H. Kučera, Frequency Analysis of English
Usage: Lexicon and Grammar. Boston: Houghton Mifflin,
April 1982, vol. 18, no. 1.

[10] D. J. Cook and L. B. Holder, “Substructure discovery using
minimum description length and background knowledge,” J.
Artif. Int. Res., vol. 1, pp. 231–255, February 1994.

612612

