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Abstract— This paper describes a Markov random field (MRF) 
model with weighting parameters optimized by conditional 
random field (CRF) for on-line recognition of handwritten 
Japanese characters. It also presents updated evaluation using 
a large testing set. The model extracts feature points along the 
pen-tip trace from pen-down to pen-up and sets each feature 
point from an input pattern as a site and each state from a 
character class as a label.  It employs the coordinates of feature 
points as unary features and the differences in coordinates 
between the neighboring feature points as binary features. The 
weighting parameters are estimated by CRF or the minimum 
classification error (MCE) method. In experiments using the 
TUAT Kuchibue database, the method achieved a character 
recognition rate of 92.77%, which is higher than the previous 
model’s rate, and the method of estimating the weighting 
parameters using CRF was more accurate than using MCE. 

Keywords-On-line recognition; Markov random field; 
character recognition 

I.  INTRODUCTION 
Efforts to improve on-line handwritten character 

recognition are continuing to yield higher recognition rates 
and remove constraints on writing text. 

Hidden Markov model (HMM) matches pen-points of an 
input pattern with states for character classes 
probabilistically [1, 2]. However, the information between 
the neighboring pen-points such as binary or triple features 
have not been used well; only unary features have been 
employed with the consequence being limited recognition 
accuracy.  

MRFs can effectively integrate the information between 
neighboring pen-points such as binary features and triple 
features [3] and they have been successfully applied to off-
line handwritten character recognition [4] and on-line stroke 
classification [5]. However, MRFs have not been applied to 
on-line handwritten character recognition; current on-line 
handwritten character recognition tend to use HMM-based 
models (note that HMMs can be viewed as a specific case of 
MRFs). 

Cho et al [6] propose a Bayesian network (BN) based 
framework for on-line handwriting recognition. BNs share 
similarities with MRFs. BNs are directional acyclic graphs 
and model the relationships between the neighboring pen-
points as conditional probability distributions, while MRFs 
are undirected graphs and model the relationships between 

the neighboring pen-points as probability distributions of 
binary or triple features. 

Introducing weighting parameters to MRFs and 
optimizing them based on CRFs [7] or MCE [8] may bring 
even higher recognition accuracy; CRF has been successfully 
applied to on-line string and off-line word recognition [9, 
10]. 

In this paper, we present an MRF model with weighting 
parameters optimized by CRFs for on-line recognition of 
handwritten Japanese characters. The model effectively 
integrates unary and binary features and introduces 
adjustable weighting parameters to the MRFs, which are 
optimized according to CRF. The proposed method extracts 
feature points along the pen-tip trace from pen-down to pen-
up and matches those feature points with states for character 
classes probabilistically based on this model.  Experimental 
results on the TUAT Kuchibue database [11] demonstrate 
the superiority of our method.  

The rest of this paper is organized as follows: Section 2 
gives an overview of our on-line handwritten character 
recognition system. Section 3 constructs a character 
recognition MRF model, and Section 4 introduces weighting 
parameters and methods to optimize them. Section 5 presents 
the experimental results, and Section 6 is our conclusion. 

II. RECOGNITION SYSTEM OVERVIEW 
We normalize an input pattern linearly by converting the 

pen-tip trace pattern to a standard size, preserving the 
horizontal-vertical ratio. 

 
After the normalization, we extract feature points using 

the method by Ramner [12]. First, the start and end points of 
every stroke are picked up as feature points. Then, the most 
distant point from the straight line between adjacent feature 
points is selected as a feature point if the distance to the 
straight line is greater than a threshold value. This selection 
is done recursively until no more feature points are selected. 
The feature point extracting process is shown in Fig. 1(a).  
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Fig. 1. Feature points extraction and Labeling. 
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The extracted feature points stand for the structure of a 
pattern. They are effective and more efficient to process in 
comparison with processing all the pen-tip points, as is done 
in [1, 2]. 

Then we use a MRF model to match the feature points 
with the states of each character class and obtain a similarity 
for each character class. We then select the character class 
with the largest similarity as the recognition result. 

III. MRF FOR CHARACTER RECOGNITION 

A. Maximum a Posteriori Probability 
We set feature points from an input pattern as sites S={s1, 

s2, s3,…,sI} and states of a character class C as labels L={l1, 
l2, l3,… ,lJ}. The system recognizes the input pattern by 
assigning labels to the sites to make the matching between 
the input pattern and each character class C  such as F={s1= 
l1, s2 = l1, s3 = l3,…,s9 = l8, s10 = l8} as shown in Fig. 1(b). F 
is called a configuration and denotes a mapping from S to L. 

The feature vectors of the feature points from the input 
pattern constitute the observation set O. In statistical or 
Bayesian paradigms, the decision-making by the character 
recognizer is based on the concept of the maximum a 
posteriori (MAP) probability: 
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P
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                      (1) 

where P(C) is the a priori probability that the given pattern 
belongs to a character class C, P(O|C) is the likelihood 
function of the observation set O for a class C. P(O) is the 
probability of the observation set O, and P(C|O) is the 
probability that the input pattern belongs to a class C for the 
observation set O. 
 The decision is as follows: 
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where C* is the estimated character class. If P(C) is set to be 
constant, and the MAP estimation becomes the maximum 
likelihood (ML) estimation. The problem in (2) is how to 
estimate P(O|C). We can express P(O|C) as 
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Here, F ={s1= li, s2 = lj,… ,sI = lk | li, lj, lk ∊L} is the 
matching from the sites S of the input pattern to the labels L 
of a character class C.  

),|()|()|,( CPCPCP FOFFO =                          (4) 
The amount of direct computation required by Eq. (3) is 

intractable. For HMM, there are two solutions: the forward-
backward (Baum-Welch) algorithm and the Viterbi 
algorithm. To perform this computation task, we consider 
only the best matching, as in the case of the Viterbi 
algorithm. That is, 

)|,()|( CPCP bestFOO ≈                     (5) 

where  
)|,(maxarg)|,( CPCP best FOFO

F
=         (6) 

Therefore, the problem of recognition is to obtain P(Fbest 
|C)P(O|Fbest,C) and the best match. 

B. Markov Random Field Models 
Calculating the probability P(F|C) is intractable because 

the interactions between the variables are global. To make it 
tractable, MRFs constrain the interdependence of labels by 
assuming that they only depend on the labels of the 
neighboring sites. This is described as Markovianity and can 
be depicted by the neighborhood system [3]. The 
neighborhood system Ni denotes the neighbors of a site si 
that satisfies sj ∊Ni⇔ si ∊Nj, si ∉Ni. A label interacts with 
only the neighboring labels. A clique c is defined as a subset 
of sites that are all mutual neighbors according to the 
neighborhood system. 

 The Hammersley-Clifford theorem establishes the 
equivalence between the Markov random field and the 
Gibbs random field [3], 
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where 
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is called the prior energy function and VF
c(F|C) is called the 

prior clique potential function defined on the corresponding 
clique c, and  
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is the normalization factor called the partition function. 
  Taking P(O|F,C) into consideration, we obtain 
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which is called global likelihood energy function, and 
∑=

c

O
c CVCE ),|(),|( FOFO                    (11) 

where VO
c(O|F,C) is called the likelihood clique potential 

function. 
For simplicity, we consider only single-site cliques 

c1={si} and pair-site cliques c2={si, sj}. From Eq. (8) and 
Eq. (11), we get 
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where 
isl  is the label of a class C assigned to si,  

isO is the 

unary feature vector extracted from site si, and 
ji ssO  is the 

binary feature vector extracted from the combination of si 
and sj. 

The likelihood clique potentials describe the statistical 
information about the observations given the labels and the 
prior clique potentials encode the prior information about 
the neighboring labels. 
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In the MAP framework, maximizing the a posteriori 
probability in Eq. (2) is equivalent to minimizing the energy 
function in Eq. (12). 

C.  Decoding Strategy 
We defined the cliques as follows: 

Single-site:  c1 = {s1, s2, s3,…, s10,…} 
Pair-site: c2= {{s1, s2}, {s2,s3}, {s3,s4} , {s4,s5} , ……, {s9,s10},…} 

The neighborhood system is according to the successive 
adjacent feature points in writing order. We define a linear-
chain MRF for each character class, as shown in Fig. 2, 
where each label has a state and each state has three 
transitions. 

 
Fig. 2. A linear-chain MRF. 

The energy function is as follows: 
 

(13) 
 

 
 

where I  is the number of feature points. 
We derive the likelihood clique potentials from the 

negative logarithm of the conditional probabilities. 
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where ),,|(
0101

CllOP ssss
 is set as 1. 

  We use a linear-chain MRF in Fig. 2 so that the state 
transition probability can be used to derive the prior 
energy function instead of the prior clique potential: 

∑
=

−
−=

I

i
ss CllPCE
ii

1
),|(log)|(

1
F

                               (15) 

where ),|(
1

CllP
ii ss −

 is the state transition probability. 
 Therefore, the energy function is as follows: 
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The smaller the energy function in Eq. (16) becomes, the 
larger will be the similarity between the input pattern and a 
character class C. 

Each character class has a linear-chain MRF, and the 
system uses the Viterbi search to match feature points of the 
input pattern with states for the MRF of each character class 
and to find the matching path with the smallest energy in Eq. 
(16) for each character class.  

The unary feature vector 
isO comprises X and Y 

coordinates of si. The binary feature vector 
1−iissO  has two 

elements (dx: X coordinate of si - X coordinate of si-1, dy: Y 
coordinate of si - Y coordinate of si-1), or an element (tan-

1(dy/dx) ). 
Gaussian functions are used to estimate ),|( ClOP
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To train the MRF of each character class, we first 
initialize the feature points of an arbitrary character pattern 
among the training patterns of the character class as states of 
the MRF, set each unary feature vector of each feature point 
as the mean of the Gaussian function for each single-state, 
and set each binary feature vector between two adjacent 
feature points as the mean of the Gaussian function for each 
pair-state, and initialize the variances of those Gaussian 
functions and the state transition probabilities as 1. Then 
we use the Viterbi algorithm or the Baum-Welch algorithm 
to train the parameters of the MRF (the means and variances 
of Gaussian functions and the state transition probabilities). 
We repeat the training until the optimal parameters are 
obtained. 

IV. OPTIMIZATION OF WEIGHTING PARAMETER 
For Eq. (16), we can introduce weighting parameters (λ=λ1, 

λ2, λ3) to adjust the values of the unary features, binary 
features, and state transition probabilities as follows:  

(18) 
 
 
 

The weighting parameters can be optimized based on 
CRF or MCE. Different weighting parameters can be 
applied to different character classes. We can also adjust 
more parameters such as the means and the variances of 
Gaussian functions and the state transition probabilities of 
the MRFs. In doing so, however, more training patterns 
must be prepared. The training patterns that we have are not 
enough to adjust more parameters to obtain a higher 
recognition rate. Therefore, we only introduce the three 
common weighting parameters for all the character classes 
to adjust the values of the unary features, binary features, 
and state transition probabilities. 

According to the CRF model, the posterior probability of 
a character class C is given by: 

( )

( )
( )

( )
( )

( )∑∑
∑

∑∑
∑

∑∑
∑

−−

−−
=

−−

−−
=

−

−
=

i iC

i

C

i iC

i

C

i ic

i

c

C
iic

c

C
iic

c

C
ic

c

CECE

CECE

CECE

CECE

CE

CE
CP

F

F

F

F

F

F

FOλ

FOλ

FOλ

FOλ

FOλ

FOλ
O

)(exp())|,,(exp

)(exp())|,,(exp

)()|,,(exp

)()|,,(exp

),,,(exp

),,,(exp
)|(

                  (19) 

where FC is a matching of a character class C.  We set P(C) 
to be constant so that E(C) = -log P(C) is also a constant and 
the posterior probability is: 
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We can optimize the parameter vectorλby minimizing 
the following negative log-likelihood (NLL) loss function 
[15] using stochastic gradient descent [16].  

 )|(log),( OOλ CPLNLL −=                          (21) 
where C is the correct character class of O. 

We can also apply the MCE criterion [8] optimized by 
stochastic gradient descent [16] to find the optimal 
parameter vector λ by minimizing the following difference 
between the scores of the most confusing character class and 
that of the correct one: 
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where the score for the input pattern and the character class 
Ci is as follows: 
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Each character class has an MRF with weighting 
parameters and the system uses the Viterbi search to match 
the feature points of the input pattern with the states of the 
MRF for each character class and to find the matching path 
with the smallest E(λ , O, F|C) in Eq. (18) for each 
character class. 

V. EXPERIMENTS 
To evaluate the character recognition model, we trained 

the character recognizer of the MRFs and the weighting 
parameters by using an on-line Japanese handwriting 
database called Nakayosi [11]. The performance test used an 
on-line Japanese handwriting database called Kuchibue [11]. 
Table 1 shows the details of the databases. Each character 
class (character category) has a different number of sample 
patterns, and kana and symbol have more patterns (see 
Table 1). To maintain balance, we selected 100 patterns at 
random from each character class of the Kuchibue database 
and used the same number of sample patterns for each 
character class to evaluate the performance. The 
experiments were implemented on an Intel(R) Core(TM)2 
Duo CPU 2.66 GHz with 1.99 GB memory.  

Table 1. Statistics of character pattern databases. 
 Nakayosi_t Kuchibue_d

#writers  163 120
#characters 
/each writer 

Total 11,962 10,403
Kanji/Kana/ 

Symbol/alpha numerals 
5,643/5,068/ 
1,085/166 

5,799/3,723/
816/65

#character 
categories 
/each writer 

Total 3,356 4,438
Kanji/Kana/ 

Symbol/alpha numerals 
2976/169/ 
146/62 

4058/169
149/62

#average 
category 

characters 

Total 3.6 2.3
Kanji/Kana/ 

Symbol/alpha numerals 
1.9/30.0/ 

7.4/2.7 
1.4/22.0

5.5/1.0 

VI. COMPARISON OF MRFS AND HMMS 
First, we compared MRFs and HMMs. To ensure a fair 

comparison, the MRFs and HMMs used the same databases, 
the same training method, and the same features. For the 
HMMs, we merged the binary features into the unary 
features and used a vector of larger dimension for each 
single-site, because the HMMs do not consider the binary 

features for each pair-site and only use the unary features 
for each single-site. We defined an HMM for each character 
class, in a manner similar to the linear-chain MRF shown in 
Fig. 2, where each label had a state and each state had three 
transitions. 

We extracted the following features from each single-site 
si and each pair-site {si, sj}:  
● x: X coordinates of si                                    ● y: Y coordinates of si 
●dx: X coordinate of si - Y coordinate of si-1 
●dy: Y coordinate of si - Y coordinate of si-1    ●dir: tan-1(dy/dx) 

The HMMs evaluated the similarity between the input 
pattern and a character class C by using Eq. (24) below, 
whereas the MRFs evaluated it by using Eq. (16). 
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where 
isO is the unary feature vector extracted from a site si 

and has four elements (x, y, dx, dy), three elements (x, y, dir), 
or only two elements (x, y). Since HMMs always tend to use 
the direction features dir we also tested their performance. 
For the MRFs, we tried two types of features. The first type 
was (x, y) for the unary features and (dx, dy) for the binary 
features. The second type was (x, y) for the unary features 
and (dir) for the binary features.  

We test the performance of recognizing kanji of Chinese 
origin with 1,000 categories, hiragana (a subset of kana) 
with 46 categories and lowercase alphabet with 26 
categories. We used the Viterbi algorithm and the Baum-
Welch algorithm to train the models. Table 2 shows the 
results. 

Table 2. Results of MRFs and HMMs (%). 
Method

Performance 
MRFs HMMs

x,y,dx,dy x,y,dir x,y,dx,dy x,y,dir x,y
kanji  Viterbi 97.44 95.36 96.69 93.25 94.58

Baum-Welch 97.37 95.32 96.69 93.20 94.64
hira-
gana 

Viterbi 95.36 91.30 93.86 90.45 90.08
Baum-Welch 95.30 91.39 93.80 90.45 90.80

alphabet Viterbi 92.61 88.65 89.84 89.23 87.23
Baum-Welch 93.15 89.23 90.23 89.65 87.26

  MRFs and HMMs took about the same recognition times 
and training times. The average character recognition time 
was 0.0029 ms when using features (x, y, dx, dy),  0.0027 
ms when using (x, y, dir), and  0.0022 ms when using (x, y). 
The average training time of an iteration for the Viterbi 
algorithm is about 16 s whereas it is about 51 s for the 
Baum-Welch algorithm. These results lead us to the 
following observations: 
(1) MRFs had higer recognition accuracy than HMMs 

except in the case of alphabet recognition with features 
(x, y, dir). Therefore, we can conclude that the MRFs 
are more effective than HMMs as a result of their 
integrating information between neighboring pen-points 
such as binary features. 

(2) More features resulted in higher recognition accuracy 
except in the case of kanji recognition with HMMs and 
features (x, y, dir) and the case of hiragana recognition 
with HMMs and features (x, y, dir) trained by the 
Baum-Welch algorithm. 

(3) The accuracies of the Viterbi algorithm and the Baum-
Welch algorithm were comparable. 
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A. Comparison of Models with Parameter Optimization 
Next, we compared the performance of four recognition 

models: MRFs with weighting parameters optimized by 
CRF or by MCE, MRFs without weighting parameters, and 
the model presented in [15] that uses a Structured Character 
Pattern Representation (SCPR) dictionary and Linear-time 
Elastic Matching (LTM). We test the performance for all 
character categories of the Kuchibue database. We used the 
Viterbi algorithm to train the MRF models and used unary 
features (x, y) and binary features (dx, dy) for the MRFs. 
LTM extracted the same feature points from on-line patterns 
as the MRFs and learned several prototypes using a learning 
vector quantization (LVQ) method for each character class. 
It then matches those feature points from the input pattern 
with those of each prototype of each character class. LTM 
does not consider the distributions for each feature points 
and only uses the unary features (x, y, dir) to calculate the 
distances between matched pairs of feature points of the 
input pattern and each prototype, and then sum those 
distances to evaluate the similarity between the input pattern 
and each prototype. 

We use character recognition rate Cr, average character 
recognition time Tav_rec_t, and memory consumption to 
evaluate the performance of character recognition. Table 3 
shows the results. For reference, the trained weights gotten 
by CRF are as follows: 

(λ1, λ2, λ3) = (0.28, 0.48, 0.94). 
From the weighting parameters, we can see that the 

weighting parameter λ3 for state transition probabilities is 
the highest and the weighting parameter λ1 for unary 
features is the lowest. 

Table 3. Comparison of recognition models. 
Method 

Performance 
MRF with weighting parameters MRF LTM CRF MCE 

Test 
Cr (%) 92.77 92.53 92.30 89.67

Tav_rec_t(s) 0.003 0.003 0.003 0.002
memory 12MB 12MB 12MB 149KB

From the results, we can see that the MRF model 
remarkably improved the character recognition accuracy, 
although it consumed slightly more processing time and 
larger memory space compared with LTM. Introducing the 
adjustable weighting parameters to the MRF model yielded 
better recognition accuracy than not using them, and the 
CRF method for estimating the weighting parameters was 
more accurate than the MCE method. 
B. Analysis of Misrecognitions 

Figure 3 shows some examples of misrecognition 
produced by the proposed model. For each example, the 
upper line is the written character and the lower line is the 
recognition result followed by the correct result (ground-
truth). These recognition errors are due to similar characters. 
To avoid them, we need to improve the character 
recognition accuracy. Exploiting linguistic context can 
dramatically reduce such misrecognitions. 

 
栗 (粟) 

 
壬 (王) 

 
２ (乙) 

 
伺 (何) 

 
。(O) 

 
ぁ(あ) 

 
P (ｐ)

 
1 (|) 

Fig. 3. Examples of recognition errors. The character below each 
character pattern is the recognition result, followed by the ground-truth. 

VII. CONCLUSION 
We presented a method of on-line handwritten Japanese 

character recognition using MRFs with weighting 
parameters optimized on the basis of CRFs. The method 
effectively integrates unary features and binary features, 
uses adjustable weighting parameters, and optimizes them. 
Experimental results demonstrated the superiority of our 
method. 

Improving recognition performance is the aim of our 
future work. This can be achieved by incorporating more 
effective unary and binary features and exploiting better 
weighting parameters. Speeding up recognition is another 
goal. 
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