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Abstract— Though designing of classifies for Indic script 
handwriting recognition has been researched with enough 
attention, use of language model has so far received little 
exposure. This paper attempts to develop a weighted finite-
state transducer (WFST) based language model for improving 
the current recognition accuracy. Both the recognition 
hypothesis (i.e. the segmentation lattice) and the lexicon are 
modeled as two WFSTs. Concatenation of these two FSTs 
accept a valid word(s) which is (are) present in the recognition 
lattice. A third FST called error FST is also introduced to 
retrieve certain words which were missing in the previous 
concatenation operation. The proposed model has been tested 
for online Bangla handwriting recognition though the 
underlying principle can equally be applied for recognition of 
offline or printed words. Experiment on a part of ISI-Bangla 
handwriting database shows that while the present classifiers 
(without using any language model) can recognize about 73% 
word, use of recognition and lexicon FSTs improve this result 
by about 9% giving an average word-level accuracy of 82%. 
Introduction of error FST further improves this accuracy to 
93%. This remarkable improvement in word recognition 
accuracy by using FST-based language model would serve as a 
significant revelation for the research in handwriting 
recognition, in general and Indic script handwriting 
recognition, in particular. 
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I.  INTRODUCTION 
Use of language models in OCR systems is quite 

common [1-4]. The success of these models for improving 
recognition accuracy inspired the handwriting recognition 
community to use similar models. Therefore, post-processing 
including use of language models is now a well-known topic 
in the field of handwriting recognition [5-13]. 

Handwriting recognition in Indic script has already 
attained considerable attention. However, the current 
research is still confined in finding and feature sets and 
designing efficient classifiers. Role of language model for 
Indic script OCR (printed as well as handwriting be it offline 
or online) is not yet explored. This paper is motivated by this 
need. Online handwriting recognition in Bengali (Bangla) 
script has been taken as a reference though the proposed 
model can equally be applied to printed OCR and offline 
handwriting recognition.   

Earlier the post-processing used in handwriting 
recognition was mostly lexicon based [5-8]. This method 
maintains a series of recognition hypotheses and each 
hypothesis is checked and accepted against a lexicon which 
is normally stored in a trie structure to make the retrieval 
fast. The main disadvantage of this approach is its inability 
to correct error if none of the recognition hypotheses 
corresponds to a valid word. Moreover, for a given 
recognition hypothesis, this method may retrieve a large 
number of candidate words if the number of character classes 
is high. It takes huge memory and time. The Bengali script 
has a few hundred (more than 200) characters and hence, use 
of a simple string matching based approach is quite 
unattractive.     

Contrary to this, n-gram based techniques are also in use 
[9]. In this method, character (or grapheme) bi-gram or tri-
gram statistics are computed from a fixed lexicon or 
language corpus. Such a method can easily be applied for 
open-vocabulary handwriting recognition. However, 
problems of using an n-gram based language model are (i) 
many n-grams may not be encountered in training data (that 
leads to use of inaccurate statistics) and (ii) n-gram based 
model may accept lexically incorrect words. 

Considering the limitations of the previous language 
models, this paper investigates a relative new model which is 
based on weighted finite-state transducers (WFSTs). WFSTs 
are based on the general algebraic notion of semiring [14]. 
The semiring abstraction permits the definition of automata 
representations and algorithms over a broad class of weight 
sets and algebraic operations. WFSTs, therefore, allow 
language models and recognition alternatives to be 
manipulated algebraically. Different models represented by 
WFSTs can be concatenated, unioned, intersected, 
composed, minimized, reversed, complemented, and 
transformed in a variety of other ways. In the recent past, 
WFSTs have emerged as a well tested technology 
successfully used in many tasks [15] including speech 
recognition, information extraction, statistical machine 
translation, OCR post-processing [13], etc. 

WFSTs can be thought of as directed graphs whose edges 
are associated with input and output symbols and weights. 
The symbols can be Unicode characters or they can be 
graphemes, n-grams, or ligatures, etc. In this paper, we 
would like to investigate the role of WFSTs to model 
recognition lattice, lexicon as well as to edit the recognition 
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hypotheses when none of the hypotheses corresponds to any 
word in the lexicon. 

The rest of the paper is organized as follows. Section-2 
describes different language models including the one based 
on WFST. These models were implemented and tested for 
Bengali handwriting recognition. Experimental results are 
presented in section-3. Section-4 concludes the paper. 

 

Figure 1. An online handwritten word in Bengali. 

II. LANGUAGE MODELS 
The input to our recognition system is a single online 

handwritten word as shown in Fig. 1. The word undergoes a 
segmentation module that normally prefers over-
segmentation of a word into constituent graphemes. Figure 2 
shows the segmentation of the word in Figure 1.  

 

Figure 2. Segmentation of the word in Figure 1. 
 
A MLP-based Neural Network based classifier works on 

this segmented data and generates recognition hypotheses. 
The recognizer assumes that a valid character is segmented 
in three or less consecutive segments. Such an empirically 
tested assumption reduces the number of recognition 
alternatives. Figure 3 shows the segmentation lattice for the 
word in Figure 1. The numbers on the edges correspond to 
the segment number as shown in Figure 2.   

Each segment of this graph represents either a part of 
character or a complete character or a combined character 
sequences. Using the character classifier, each segmented 
part in each sequence is recognized with a confidence score. 
At the moment, we just know our different choices of words 
(i.e. character sequences). One of these choices may 
represent a valid word or a partially correct word. Different 
approaches including use of language models are used to 
pick the right word from these alternatives. In our study, we 
have explored three different approaches in order to choose 
the correct alternative: (i) recognition score-base approach, 
(ii) trie-base string matching (this is similar to using two 
WFSTs as discussed later), and (iii) language model based 
on three WFSTs. 

 

Figure 3. Segmentation Graph. 

A. Score-based approach 
Segmentation graph shows us all possible choices of 

word i.e. a sequence of recognized characters with some 
score or confidence. The path having the best score or 
confidence measure is selected as the best alternative. The 
score of a path is calculated as follows. Each recognized 
character in each choice holds some score; these scores are 
then added and divided by the number of characters along 
the path to get an average score for the path (or word). So 
each word choice has some score, maximum score help us to 
decide the most likely word. Note that this method does not 
use any language model at all rather it relies only on the 
character classifier. We treat such a framework a base-
system which can be used for an open-vocabulary 
environment but it doesn’t use any post-processing.   

 

Figure 4: Lexicon represented in trie. 

B. Trie-based approach  
This is one of the lexicon based approach where the 

lexicon is stored in trie data structure. Figure 4 shows an 
example trie of four words {eখন, eবং, আর, আিম} including the 
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one in Figure 1. Each word alternative in Figure 3 is 
searched in the trie and if a match is found the alternative is 
considered as a valid word. The use of trie structure 
decreases the searching complexity. If more than one word 
alternative is turned up as valid words, the score-base 
approach is then applied to choose the best alternative.  

C. FST-based Language Model 
The previous trie-based approach, in fact, can be viewed 

as concatenation of two WFSTs. In our study, the graph in 
Figure 3 is modeled as a WFST (called recognition FST or 
FSTR). The segment (or segments) as represented by each 
edge in figure 3 is considered as input in FSTR, output is the 
corresponding recognition output and weight is the 
recognition confidence. Similarly, lexicon is modeled as 
another FST (say, FSTL) where input and output are the same 
character and each weight is considered as unity. Now, 
composition of these two WFSTs (i.e. FSTR • FSTL) 
identifies the correct word alternative (s). 

The main disadvantage of this model is its inability to 
identify the word if no recognition alternative corresponds to 
any lexicon word. In such cases, the concatenation operation 
produces null string. Such a shortcoming motivates us to use 
a different model comprises of three FSTs as described next. 

Use of Edit FST: In the above language model when 
FSTR • FSTL produces null, an editing FST (say, FSTE) is 
introduced. The idea is to edit the recognition FST in order to 
find the intended word from lexicon FST. For example, say 
xyz is the intended word which in FSTL. But no path in 
contains this alternative. Say, alternatives in FSTR are wyz, 
uvz, wz, and xv. So the composition FSTR • FSTL will 
produce null. FSTE edits members of FSTR and generates 
alternatives like *yz, *vz, *z, *v, w*z, u*z, w*, x*, wy*, 
uv*, **z, and so on where “*” denotes character whose 
matching is not considered. So here we use composition of 
three FSTs as FSTR • FSTE• FSTL. Several issues are to be 
considered here as explained next.  

Let the input word be eখন. Using its segmented part, we 
get a transducer FSTR with all choices. Assume FSTR = {তখন, 
eথণ, eখণ, eবন, …….} and FSTL={eখন, eবং, আর, আিম}. As no 
word alternative corresponds to the valid word, composition 
of FSTR and FSTL does not produce the correct recognition. 
The editing FST is in form of FSTE = {*খন, e**, eখ*, e*ন…
… .} respectively. Now composition of FSTE and FSTL 
produces the word eখন as an alternative. Here, FSTR • FSTE• 
FSTL produces only one word as output but it may produce 
more than one alternative as output. Consider the following 
example. 

Say, the words আর and তার both are included in lexicon 
transducer, i.e. in FSTL. Let the input word be আর and no 
alternative in FSTR is a valid word. We get the editing FSTE 
in form of *◌ার (when the matching of first character is 
ignored). In this case, the final composition of three FSTs 
will produce both আর and তার as alternatives. Under this 
situation, the first segmented part (for which matching was 
ignored) is compared with these two possible characters and 
minimum score gives us a possible selection of the correct 
alternative. 

III. EXPERIMENTS 
To test the performance of the proposed method, we used 

a part of the ISI database which has been collected for online 
recognition of Bengali handwriting. This is indeed a huge 
collection from which we chose 1950 most frequent words 
written by 18 writers. Each subject contributes single sample 
for each word. Interestingly, these words contain almost all 
letters of the Bengali alphabet as well as the cover more than 
50% of the language corpus. A MLP-based NN (Neural 
Network) character classifier is configured for the purpose of 
writer-independent word recognition. The following statistics 
are important for training and testing of this classifier in the 
context of word recognition: 

Number of words (Vocabulary size): 1,950 

Number of writers: 18 

Total number of word samples: 35,100 

Total number of character samples: 148,122 

Number of character classes: 220 

Number of words from which character samples used for 
training and validation: 28,080  

Number of test words (distinct from training): 7020    

Test words contain at least one sample for each of the 
vocabulary word. Three approaches as discussed in the 
previous section are tested. For implementation of the 
language model, we have used the open source PyOpenFST 
library [16] as the basis of our statistical language modeling 
tools. This library provides Python bindings to the original 
OpenFST library [17] that implements the algorithms on 
weighted finite-state transducers (WFSTs) and provides tools 
for constructing, combining, optimizing, and searching 
WFSTs. The word recognition results are given in Table I. 

TABLE I: WORD RECOGNITION ACCURACY 
#Test words = 7,020 
Lexicon size = 1,950  

# Correctly 
recognized 

words  

(%) 
Correct 

Score-based 
(No Language Model) 5,144 73.28 

Trie-based Language Model 5,732 81.65 

FST-based Language Model 6,528 92.99 

 
The results reported in table-1 are quite interesting. Use 

of no language model gives about 73% accuracy for word 
recognition. Use of a trie-based language model improves 
this rate to about 82%. So 9% gain is observed. As this 
method can be viewed as composition of two FSTs, i.e. 
(FSTR • FSTL), the corresponding recognition accuracy is 
viewed as the performance of a WSFT-based language 
model where both the recognition lattice and lexicon are 
modeled as WFSTs. Introduction of Editing FST improves 
the results further to about 93%. As a whole, about 20% 
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improvement is achieved by using the proposed language 
model with the base-system that doesn’t use any post-
processing. 

Errors still remaining have been analyzed and it reveals 
that use of editing FST generates many alternatives in the 
final composition. Choosing the right word from these 
alternatives remains a problem that results in the errors. 
Moreover, use of editing FST is computationally expensive. 
Though for a vocabulary size of 1950 as we have used, we 
do not feel any processing penalty because of edit FST but 
for large vocabulary problem processing speed will suffer.   

IV. CONCLUSIONS 
A weighted finite-state transducer (WFST)-based 

language is configured for Indic script handwriting 
recognition. Online handwriting in Bengali has been taken as 
a reference to show the potential of the proposed language 
model. A gain of about 20% over the no-language model 
environment strongly attests the viability of the approach. 
The approach is script independent, environment (printed or 
handwritten) independent. Therefore, the same model can be 
trained and used for printed or handwritten (offline or online) 
word recognition in any language script.  

This is not only the first of its kind that attempts to 
develop a FST-based language model for an Indic script, 
such a model is indeed in limited use as a post-processing 
tool (the paper in [13] does use a similar model). Therefore, 
the present research provides new avenues for doing further 
research on developing language models for OCR post-
processing. Use of edit FST improves the accuracy but 
further research is needed to use it more efficiently. Use of 
some heuristics to limit the number of alternatives would 
make the present model more attractive.  
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