
A Weighted Finite-State Transducer (WFST)-based Language Model for Online
Indic Script Handwriting Recognition

Suhan Chowdhury and Utpal Garain
Computer Vision & Pattern Recognition (CVPR) Unit

Indian Statistical Institute
Kolkata 700108, India

utpal@isical.ac.in

Tanushyam Chattopadhyay
Innovation Lab, Kolkata

Tata Consultancy Services
Kolkata, India

t.chattopadhyay@tcs.com

Abstract— Though designing of classifies for Indic script
handwriting recognition has been researched with enough
attention, use of language model has so far received little
exposure. This paper attempts to develop a weighted finite-
state transducer (WFST) based language model for improving
the current recognition accuracy. Both the recognition
hypothesis (i.e. the segmentation lattice) and the lexicon are
modeled as two WFSTs. Concatenation of these two FSTs
accept a valid word(s) which is (are) present in the recognition
lattice. A third FST called error FST is also introduced to
retrieve certain words which were missing in the previous
concatenation operation. The proposed model has been tested
for online Bangla handwriting recognition though the
underlying principle can equally be applied for recognition of
offline or printed words. Experiment on a part of ISI-Bangla
handwriting database shows that while the present classifiers
(without using any language model) can recognize about 73%
word, use of recognition and lexicon FSTs improve this result
by about 9% giving an average word-level accuracy of 82%.
Introduction of error FST further improves this accuracy to
93%. This remarkable improvement in word recognition
accuracy by using FST-based language model would serve as a
significant revelation for the research in handwriting
recognition, in general and Indic script handwriting
recognition, in particular.

Keywords-Handwrriting recognition; Language model;
Finite State Transducer (FST); Indic scripts.

I. INTRODUCTION
Use of language models in OCR systems is quite

common [1-4]. The success of these models for improving
recognition accuracy inspired the handwriting recognition
community to use similar models. Therefore, post-processing
including use of language models is now a well-known topic
in the field of handwriting recognition [5-13].

Handwriting recognition in Indic script has already
attained considerable attention. However, the current
research is still confined in finding and feature sets and
designing efficient classifiers. Role of language model for
Indic script OCR (printed as well as handwriting be it offline
or online) is not yet explored. This paper is motivated by this
need. Online handwriting recognition in Bengali (Bangla)
script has been taken as a reference though the proposed
model can equally be applied to printed OCR and offline
handwriting recognition.

Earlier the post-processing used in handwriting
recognition was mostly lexicon based [5-8]. This method
maintains a series of recognition hypotheses and each
hypothesis is checked and accepted against a lexicon which
is normally stored in a trie structure to make the retrieval
fast. The main disadvantage of this approach is its inability
to correct error if none of the recognition hypotheses
corresponds to a valid word. Moreover, for a given
recognition hypothesis, this method may retrieve a large
number of candidate words if the number of character classes
is high. It takes huge memory and time. The Bengali script
has a few hundred (more than 200) characters and hence, use
of a simple string matching based approach is quite
unattractive.

Contrary to this, n-gram based techniques are also in use
[9]. In this method, character (or grapheme) bi-gram or tri-
gram statistics are computed from a fixed lexicon or
language corpus. Such a method can easily be applied for
open-vocabulary handwriting recognition. However,
problems of using an n-gram based language model are (i)
many n-grams may not be encountered in training data (that
leads to use of inaccurate statistics) and (ii) n-gram based
model may accept lexically incorrect words.

Considering the limitations of the previous language
models, this paper investigates a relative new model which is
based on weighted finite-state transducers (WFSTs). WFSTs
are based on the general algebraic notion of semiring [14].
The semiring abstraction permits the definition of automata
representations and algorithms over a broad class of weight
sets and algebraic operations. WFSTs, therefore, allow
language models and recognition alternatives to be
manipulated algebraically. Different models represented by
WFSTs can be concatenated, unioned, intersected,
composed, minimized, reversed, complemented, and
transformed in a variety of other ways. In the recent past,
WFSTs have emerged as a well tested technology
successfully used in many tasks [15] including speech
recognition, information extraction, statistical machine
translation, OCR post-processing [13], etc.

WFSTs can be thought of as directed graphs whose edges
are associated with input and output symbols and weights.
The symbols can be Unicode characters or they can be
graphemes, n-grams, or ligatures, etc. In this paper, we
would like to investigate the role of WFSTs to model
recognition lattice, lexicon as well as to edit the recognition

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.126

599

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.126

599

hypotheses when none of the hypotheses corresponds to any
word in the lexicon.

The rest of the paper is organized as follows. Section-2
describes different language models including the one based
on WFST. These models were implemented and tested for
Bengali handwriting recognition. Experimental results are
presented in section-3. Section-4 concludes the paper.

Figure 1. An online handwritten word in Bengali.

II. LANGUAGE MODELS
The input to our recognition system is a single online

handwritten word as shown in Fig. 1. The word undergoes a
segmentation module that normally prefers over-
segmentation of a word into constituent graphemes. Figure 2
shows the segmentation of the word in Figure 1.

Figure 2. Segmentation of the word in Figure 1.

A MLP-based Neural Network based classifier works on

this segmented data and generates recognition hypotheses.
The recognizer assumes that a valid character is segmented
in three or less consecutive segments. Such an empirically
tested assumption reduces the number of recognition
alternatives. Figure 3 shows the segmentation lattice for the
word in Figure 1. The numbers on the edges correspond to
the segment number as shown in Figure 2.

Each segment of this graph represents either a part of
character or a complete character or a combined character
sequences. Using the character classifier, each segmented
part in each sequence is recognized with a confidence score.
At the moment, we just know our different choices of words
(i.e. character sequences). One of these choices may
represent a valid word or a partially correct word. Different
approaches including use of language models are used to
pick the right word from these alternatives. In our study, we
have explored three different approaches in order to choose
the correct alternative: (i) recognition score-base approach,
(ii) trie-base string matching (this is similar to using two
WFSTs as discussed later), and (iii) language model based
on three WFSTs.

Figure 3. Segmentation Graph.

A. Score-based approach
Segmentation graph shows us all possible choices of

word i.e. a sequence of recognized characters with some
score or confidence. The path having the best score or
confidence measure is selected as the best alternative. The
score of a path is calculated as follows. Each recognized
character in each choice holds some score; these scores are
then added and divided by the number of characters along
the path to get an average score for the path (or word). So
each word choice has some score, maximum score help us to
decide the most likely word. Note that this method does not
use any language model at all rather it relies only on the
character classifier. We treat such a framework a base-
system which can be used for an open-vocabulary
environment but it doesn’t use any post-processing.

Figure 4: Lexicon represented in trie.

B. Trie-based approach
This is one of the lexicon based approach where the

lexicon is stored in trie data structure. Figure 4 shows an
example trie of four words {eখন, eবং, আর, আিম} including the

600600

one in Figure 1. Each word alternative in Figure 3 is
searched in the trie and if a match is found the alternative is
considered as a valid word. The use of trie structure
decreases the searching complexity. If more than one word
alternative is turned up as valid words, the score-base
approach is then applied to choose the best alternative.

C. FST-based Language Model
The previous trie-based approach, in fact, can be viewed

as concatenation of two WFSTs. In our study, the graph in
Figure 3 is modeled as a WFST (called recognition FST or
FSTR). The segment (or segments) as represented by each
edge in figure 3 is considered as input in FSTR, output is the
corresponding recognition output and weight is the
recognition confidence. Similarly, lexicon is modeled as
another FST (say, FSTL) where input and output are the same
character and each weight is considered as unity. Now,
composition of these two WFSTs (i.e. FSTR • FSTL)
identifies the correct word alternative (s).

The main disadvantage of this model is its inability to
identify the word if no recognition alternative corresponds to
any lexicon word. In such cases, the concatenation operation
produces null string. Such a shortcoming motivates us to use
a different model comprises of three FSTs as described next.

Use of Edit FST: In the above language model when
FSTR • FSTL produces null, an editing FST (say, FSTE) is
introduced. The idea is to edit the recognition FST in order to
find the intended word from lexicon FST. For example, say
xyz is the intended word which in FSTL. But no path in
contains this alternative. Say, alternatives in FSTR are wyz,
uvz, wz, and xv. So the composition FSTR • FSTL will
produce null. FSTE edits members of FSTR and generates
alternatives like *yz, *vz, *z, *v, w*z, u*z, w*, x*, wy*,
uv*, **z, and so on where “*” denotes character whose
matching is not considered. So here we use composition of
three FSTs as FSTR • FSTE• FSTL. Several issues are to be
considered here as explained next.

Let the input word be eখন. Using its segmented part, we
get a transducer FSTR with all choices. Assume FSTR = {তখন,
eথণ, eখণ, eবন, …….} and FSTL={eখন, eবং, আর, আিম}. As no
word alternative corresponds to the valid word, composition
of FSTR and FSTL does not produce the correct recognition.
The editing FST is in form of FSTE = {*খন, e**, eখ*, e*ন…
… .} respectively. Now composition of FSTE and FSTL
produces the word eখন as an alternative. Here, FSTR • FSTE•
FSTL produces only one word as output but it may produce
more than one alternative as output. Consider the following
example.

Say, the words আর and তার both are included in lexicon
transducer, i.e. in FSTL. Let the input word be আর and no
alternative in FSTR is a valid word. We get the editing FSTE
in form of *◌ার (when the matching of first character is
ignored). In this case, the final composition of three FSTs
will produce both আর and তার as alternatives. Under this
situation, the first segmented part (for which matching was
ignored) is compared with these two possible characters and
minimum score gives us a possible selection of the correct
alternative.

III. EXPERIMENTS
To test the performance of the proposed method, we used

a part of the ISI database which has been collected for online
recognition of Bengali handwriting. This is indeed a huge
collection from which we chose 1950 most frequent words
written by 18 writers. Each subject contributes single sample
for each word. Interestingly, these words contain almost all
letters of the Bengali alphabet as well as the cover more than
50% of the language corpus. A MLP-based NN (Neural
Network) character classifier is configured for the purpose of
writer-independent word recognition. The following statistics
are important for training and testing of this classifier in the
context of word recognition:

Number of words (Vocabulary size): 1,950

Number of writers: 18

Total number of word samples: 35,100

Total number of character samples: 148,122

Number of character classes: 220

Number of words from which character samples used for
training and validation: 28,080

Number of test words (distinct from training): 7020

Test words contain at least one sample for each of the
vocabulary word. Three approaches as discussed in the
previous section are tested. For implementation of the
language model, we have used the open source PyOpenFST
library [16] as the basis of our statistical language modeling
tools. This library provides Python bindings to the original
OpenFST library [17] that implements the algorithms on
weighted finite-state transducers (WFSTs) and provides tools
for constructing, combining, optimizing, and searching
WFSTs. The word recognition results are given in Table I.

TABLE I: WORD RECOGNITION ACCURACY
#Test words = 7,020
Lexicon size = 1,950

Correctly
recognized

words

(%)
Correct

Score-based
(No Language Model) 5,144 73.28

Trie-based Language Model 5,732 81.65

FST-based Language Model 6,528 92.99

The results reported in table-1 are quite interesting. Use

of no language model gives about 73% accuracy for word
recognition. Use of a trie-based language model improves
this rate to about 82%. So 9% gain is observed. As this
method can be viewed as composition of two FSTs, i.e.
(FSTR • FSTL), the corresponding recognition accuracy is
viewed as the performance of a WSFT-based language
model where both the recognition lattice and lexicon are
modeled as WFSTs. Introduction of Editing FST improves
the results further to about 93%. As a whole, about 20%

601601

improvement is achieved by using the proposed language
model with the base-system that doesn’t use any post-
processing.

Errors still remaining have been analyzed and it reveals
that use of editing FST generates many alternatives in the
final composition. Choosing the right word from these
alternatives remains a problem that results in the errors.
Moreover, use of editing FST is computationally expensive.
Though for a vocabulary size of 1950 as we have used, we
do not feel any processing penalty because of edit FST but
for large vocabulary problem processing speed will suffer.

IV. CONCLUSIONS
A weighted finite-state transducer (WFST)-based

language is configured for Indic script handwriting
recognition. Online handwriting in Bengali has been taken as
a reference to show the potential of the proposed language
model. A gain of about 20% over the no-language model
environment strongly attests the viability of the approach.
The approach is script independent, environment (printed or
handwritten) independent. Therefore, the same model can be
trained and used for printed or handwritten (offline or online)
word recognition in any language script.

This is not only the first of its kind that attempts to
develop a FST-based language model for an Indic script,
such a model is indeed in limited use as a post-processing
tool (the paper in [13] does use a similar model). Therefore,
the present research provides new avenues for doing further
research on developing language models for OCR post-
processing. Use of edit FST improves the accuracy but
further research is needed to use it more efficiently. Use of
some heuristics to limit the number of alternatives would
make the present model more attractive.

REFERENCES

[1] J.J. Hull, “Incorporating Language Syntax in Visual Text Recognition
with a Statistical Model,” IEEE Transaction on Pattern Analysis and
Machine Intelligence, 18 (12), 1251-1256, 1996.

[2] X. Tong and D.A. Evans, “A Statistical Approach to Automatic OCR
Error Correction in Context.” In Proc. of the 4th Workshop on Very
Large Corpora (WVLC), 88-100, 1996.

[3] M. Nagata, "Japanese OCR error correction using character shape
similarity and statistical language model,” In Proc. of the 17th
International Conference on Computational Linguistics, Montreal,
Quebec, Canada, 1998.

[4] I. Bazzi, R. Schwartz, and J. Makhoul, “An Omnifont Open-
Vocabulary OCR System for English and Arabic,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 21 (6), 495-504, 1999.

[5] A. L. Koerich, R. Sabourin and C.Y. Suen, “Large vocabulary offline
handwriting recognition: A Survey,” Pattern Analysis &
Applications, 6, 97-121. Springer, 2003.

[6] A.R. Ahmad, C. Viard-Gaudin, and M. Khalid, “Lexicon-based word
recognition using support vector machine and hidden markov model,”
In Proc. of 10th International Conference on Document Analysis and
Recognition (ICDAR), 161-165, 2009.

[7] Z. Yao, X. Ding, and C. Liu, “On-line handwritten Chinese word
recognition based on lexicon,” In Proc. of 18th Int. Conf. on Pattern
Recognition (ICPR), 320-323, 2006.

[8] M. Wuthrich, M. Liwicki, A. Fischer, E. Indermuhle, H. Bunke, G.
Viehhauser, and M. Stolz, “Language model integration for the

recognition of handwritten medieval documents,” In Proc. of 10th Int.
Conf. on Document Analysis and Recognition (ICDAR), 211-215,
2009.

[9] Q-F. Wang, F. Yin, and C-L. Liu. “Integrating Language model in
handwritten chinese text recognition,” In Proc. of 10th Int. Conf. on
Document Analysis and Recognition (ICDAR), 1036-1040, 2009.

[10] Y. Zou, K. Yu, and K. Wang, “Continuous Chinese handwriting
recognition with language model,” In Proc. 11th Int. Conf. on
Frontier in Handwriting Recognition, 2008.

[11] J.F. Pitrelli and A. Roy, “Creating word-level language models for
large-vocabulary handwriting recognition,” Int. J. on Document
Analysis and Recognition (IJDAR), 2003.

[12] S. Quiniou, E. Anquetil, and S. Carbonnel, “Statistical language
model for On-line handwritten sentence recognition,” In Proc. 8th Int.
Conf. on Document Analysis and Recognition (ICDAR), 1036-1040,
2005.

[13] J.C. Cortes, R. Llobet, J. Ramon, and N. Cerdan, “Using field
Interdependence to improve Correction Performance in a Transducer-
based OCR Post-processing System,” In Proc. 12th Int. Conf. on
Frontiers in Handwriting Recognition (ICFHR), 2010.

[14] W. Kuich and A. Salomaa, “Semirings, Automata, Language,”
EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1986.

[15] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-Based
Learning Applied to Document Recognition", Proceedings of the
IEEE, Vol. 86, No. 11, pp.2278-2324, 1998

[16] PyOpenFST: Python Bindings for the OpenFST Library.
http://code.google.com/p/pyopenfst/

[17] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri,
“OpenFST: A General and Efficient Weighted Finite-State
Transducer Library,” In Proc. of 9th Int. Conf. on Implementation and
Application of Automata (CIAA), LNCS, Vol. 4783, 11-23, Prague,
Czech Republic. Springer, 2007.

602602

