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Abstract—A new generative model of handwriting patterns
is proposed for interpreting their deformations. The model
is based on feature desynchronization, which is a coupling
process of 𝑥 and 𝑦 coordinate features of different timings. By
changing the timings to be coupled, the model can generate
various deformed patterns from a single pattern. The model
is further enhanced by incorporating an adaptive rotation at
each timing for increasing the variety of deformed patterns. An
important fact is that this enhanced desynchronization model
can be interpreted intuitively as a deformation process in actual
handwriting. Experimental results showed that the model can
generate various handwriting patterns close to actual deformed
patterns.

Keywords-feature desynchronization, handwritings, genera-
tive model

I. INTRODUCTION

The purpose of this paper is to introduce a new generative
model for interpreting deformations in handwritings. That is,
the proposed model imitates a deformation process of human
handwriting. In fact, the model gives a simple explanation
why we draw a deformed line even if we want to draw
just a straight line. In addition, the model can be embedded
into elastic matching techniques for realizing deformation-
tolerant online character recognition in future.

The proposed model is inspired by asynchronous pen
movement on drawing a line. For drawing a (perfectly)
straight line, a pen should move synchronously in 𝑥-
direction and 𝑦-direction, as shown in Fig. 1 (a). In practice,
however, it is impossible to draw a perfectly straight line;
we generally have a curved (i.e., deformed) line. A possible
interpretation of this unexpected deformation is that the
pen usually moves asynchronously in 𝑥-direction and 𝑦-
direction, as shown in Fig. 1 (b).

This asynchronous pen movement can be modeled by
feature desynchronization [1]. Again, consider a situa-
tion of drawing a perfectly straight line from (0, 0)𝑇

to (10, 10)𝑇 . In a discretized manner, the straight line
can be represented as a sequence of pen-tip locations,
(0, 0)𝑇 , (1, 1)𝑇 , (2, 2)𝑇 , . . . , (10, 10)𝑇 . Feature desynchro-
nization is the process of coupling 𝑥 and 𝑦 features from
different timings and thus generates a new point. For exam-
ple, a new point (2, 3)𝑇 is generated from the original points,
(2, 2)𝑇 and (3, 3)𝑇 . One important thing is that we can
consider that this new point is generated by an asynchronous
pen movement where the pen movement in 𝑦-direction is a
bit faster than that in 𝑥-direction. The other important thing
is that this new point no longer lies on the original straight
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Figure 1. Feature desynchronization for generating deformed handwritings.
(a) No desynchronization. (b) Simple desynchronization. (c) Enhanced
desynchronization.

line; this means that we can generate various deformations
of handwritings by feature desynchronization.

This simple feature desynchronization [1] has a limitation
in its ability to generate variable deformation patterns. In
fact, as discussed later, no deformed pattern is generated
from a pattern comprised of line segments parallel to the 𝑥-
or 𝑦-axis. This fact indicates that the ability of generating
patterns by the simple feature desynchronization heavily
depends on the writing direction and thus the model is
not reasonable to be interpreted as a deformation model of
human handwriting.

This paper proposes enhanced feature desynchronization
for a new generative model with more reasonable ability
to generate deformed patterns. In the proposed model, an
adaptive rotation of the 𝑥 − 𝑦 coordinate system is newly
introduced into the feature desynchronization process. Sim-
ply speaking, this adaptive rotation can remove the above
limitation because the 𝑥− 𝑦 coordinate system is no longer
fixed.

A possible application of the proposed model is
deformation-tolerant online character recognition. Specifi-
cally, the model can be embedded into some elastic matching
method, such as the dynamic programming (DP) matching
method [2]–[4]. By nonlinear timing alignment by elastic
matching and adaptive deformation by the enhanced feature
desynchronization, it is able to fit a reference pattern to
an input pattern closely. This ability will be experimentally
shown in this paper.

It should be emphasized again that the proposed model
can be considered as a new generation model based on a
deformation process of human handwritings. In this point,
the proposed method is related to well-known handwriting
models, such as Flash and Hogan [5] and the log-normal
model [6]. However, the proposed model is far different from
those models, which focus dynamics or kinematics of the
handwriting process. In contrast, the proposed model focuses
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structural fluctuation, i.e., deformations, in a direct manner.
The idea of feature desynchronization is rarely found in

literatures, but several trials in other recognition tasks [7]–
[9]. Artières et al. [10] have coupled online and offline
features for handwriting recognition. Their trial does not aim
to model deformations in handwritings and therefore is very
different from ours.

II. GENERATIVE MODEL BASED ON SIMPLE FEATURE

DESYNCHRONIZATION

A. Simple Feature Desynchronization [1]

Consider feature desynchronization of a handwriting pat-
tern 𝑹 = 𝒓1, 𝒓2, . . . , 𝒓𝑗 , . . . , 𝒓𝐽 , where 𝒓𝑗 is the 𝑥-𝑦 coor-
dinate feature vector of the timing 𝑗, i.e., 𝒓𝑗 = (𝑥𝑗 , 𝑦𝑗)

𝑇 .
As noted in Section I, feature desynchronization is a process
of coupling 𝑥 and 𝑦 features of different timings. As shown
in Fig. 2 (a), a new point 𝒓 = (𝑥𝑙, 𝑦𝑘)

𝑇 is generated by the
coupling. This fact indicates that feature desynchronization
over the whole pattern will generate a new pattern.

A generated pattern with 𝐼 couples is represented as �̃� =
𝒓1, . . . , 𝒓𝑖, . . . , 𝒓𝐼 , where 𝒓𝑖 = (𝑥𝑗(𝑖), 𝑦𝑘(𝑖))

𝑇 . The functions
𝑗 = 𝑗(𝑖) and 𝑘 = 𝑘(𝑖) specify feature desynchronization. By
controlling those functions, it is possible to generate various
patterns from a single pattern 𝑹.

For regulating the effect of desynchronization, we assume
the following three constraints.
∙ The first constraint is monotonicity and continuity

conditions for preserving the original temporal order
in the both of 𝑥 and 𝑦 feature sequences and avoiding
large temporal jumps:{

𝑗(𝑖)− 𝑗(𝑖− 1) ∈ {0, 1, 2},
𝑘(𝑖)− 𝑘(𝑖− 1) ∈ {0, 1, 2}. (1)

∙ The second constraint is a constant lag limitation to
avoid coupling 𝑥𝑗 and 𝑦𝑘 of very different timings:

∣𝑘(𝑖)− 𝑗(𝑖)∣ ≤ 𝐿, (2)

where 𝐿 is a positive constant. A simple extension of
this constraint is an adaptive lag limitation, where the
different values 𝐿(𝑖) are used at different 𝑖 instead of
the constant 𝐿.

∙ The third constraint is the boundary condition that at
least one of 𝑗(1) and 𝑘(1) equals to 1 and, similarly,
at least one of 𝑗(𝐼) and 𝑘(𝐼) equals to 𝐽 . (Note that
this boundary condition can be modified to be more
strict or more loose. For example, a strict version is the
condition that 𝑗(1) = 𝑘(1) = 1 and 𝑗(𝐼) = 𝑘(𝐼) = 𝐽 .)

B. Limitation of Simple Feature Desynchronization

The above simple feature desynchronization has a serious
limitation that the variety of generated patterns depends
on the stroke direction. Consider an extreme case that the
handwriting pattern is just a vertical line. In this case, all
of the 𝑥-coordinate features (i.e., 𝑥1, . . . , 𝑥𝐽 ) have the same
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Figure 2. Simple feature desynchronization [1]. (a) A newly generated
point. (b) Limitation in the variety of generated patterns.

value and any feature coupling cannot make a new point.
This is because a generated point (𝑥𝑗 , 𝑦𝑘) is equivalent to
an original point (𝑥𝑘, 𝑦𝑘) and thus no deformed pattern can
be generated from the vertical line by feature desynchro-
nization.

This limitation appears even in more general cases. Fig-
ure 2 (b) illustrates the dependency between the stroke
direction and the variety of generated patterns. If the stroke
direction becomes closer to 0∘(or 90∘), the range of the
𝑥 (or 𝑦) feature values is limited. Since the patterns are
generated by using the original feature values, the variety
of the generated patterns is limited for the patterns with
those directions. Although Fig. 2 (b) uses a straight line
as the original pattern 𝑹 for simplicity, any other complex
pattern also has the same limitation depending on its local
directions.

III. GENERATIVE MODEL BASED ON ENHANCED

FEATURE DESYNCHRONIZATION

In this section, an enhanced feature desynchronization is
introduced for building a new generative model which is free
from the above limitation. The main idea of the enhanced
feature desynchronization is an adaptive rotation of the 𝑥-
𝑦 coordinate system. Figure 3 (a) shows the generation of
a new point (𝑥𝜃

𝑗 , 𝑦
𝜃
𝑘) under a rotation 𝜃. Comparison to

Fig. 2 (a) shows that a different point can be generated by
the rotation.

The generated point (𝑥𝜃
𝑗 , 𝑦

𝜃
𝑘) is described as{

𝑥𝜃
𝑗 = (𝑦𝑗 − 𝑦𝑘) sin 𝜃 cos 𝜃 + 𝑥𝑗 cos

2 𝜃 + 𝑥𝑘 sin
2 𝜃,

𝑦𝜃𝑘 = (𝑥𝑗−𝑥𝑘) sin 𝜃 cos 𝜃 + 𝑦𝑗 sin
2 𝜃 + 𝑦𝑘 cos

2 𝜃.
(3)

By eliminating 𝜃 from these equations, we have

(𝑥𝜃
𝑗 − (𝑥𝑗 + 𝑥𝑘)/2)

2 + (𝑦𝜃𝑘 − (𝑦𝑗 + 𝑦𝑘)/2)
2

=
(
(𝑥𝑗 − 𝑥𝑘)

2 + (𝑦𝑗 − 𝑦𝑘)
2
)
/4. (4)

This indicates that the new point 𝒓𝜃 = (𝑥𝜃
𝑗 , 𝑦

𝜃
𝑘) by the

enhanced feature desynchronization lies on the circle whose
diameter is defined by (𝑥𝑗 , 𝑦𝑗) and (𝑥𝑘, 𝑦𝑘). Figure 3 (b)
illustrates the circle. Note that this circle does not depend
on the center of the rotation.
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Figure 3. Enhanced feature desynchronization. (a) A point generated by enhanced feature desynchronization. (b) The circle representing all points to be
generated. (c) and (d) Two examples of �̃�𝜃 from the same 𝑹. (e) Effect of rotation angle limitation.
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Figure 4. Optimization of 𝑗(𝑖), 𝑘(𝑖), and 𝜃(𝑖) by DP.

In the enhanced desynchronization, the rotation angle 𝜃
is changed adaptively at every 𝑖. Hereafter, 𝜃(𝑖) denotes the
rotation angle at 𝑖 and �̃�𝜃 denotes a generated pattern. It
should be noted that 𝜃(𝑖) simulates a fluctuation of hand
posture as shown in Fig. 1 (c). While we draw a stroke,
our hand posture (especially, wrist angle) varies. Since the
deformation characteristics will depend on the hand posture,
it is natural to introduce 𝜃(𝑖) into the model.

Figure 3 (c) and (d) illustrate two examples of generated
patterns �̃�𝜃 from a single pattern 𝑹. Since there are
many possible couplings of two points (even under a lag
limitation), many different patterns can be generated from
the same pattern. Furthermore, even from the same point
couplings, many patterns can be generated by moving points
along circles, that is, by changing 𝜃(𝑖), as shown in (d).

According to the introduction of the adaptive rotation, we
must employ two more constraints in addition to the three
constraints of Section II-A.

∙ The fourth constraint is the rotation angle limitation to
limit 𝜃(𝑖) ∈ [−𝜃max, 𝜃max] shown in Fig. 3 (e). Under
this constraint, 𝒓𝑖 is forced to lie on a certain arc instead
of the whole circle.

∙ The fifth constraint is the continuity of 𝜃(𝑖). From the
analogy of Fig 1 (c), the rotation angle 𝜃(𝑖) should
not change abruptly and thus we employ the continuity
constraint ∣𝜃(𝑖)− 𝜃(𝑖− 1)∣ ≤ 𝜃max/2.

IV. EMBEDDING THE MODEL INTO ELASTIC MATCHING

The proposed generative model has a potential of realizing
deformation-tolerant online character recognition. Assume
that 𝑹 is a reference pattern of a certain class, and 𝑬 =

𝒆1, 𝒆2, . . . , 𝒆𝑖, . . . , 𝒆𝐼 is an input pattern to be recognized.
The input pattern 𝑬 will be correctly recognized regardless
its deformation, if we find �̃�𝜃 ∼ 𝑬.

The remaining problem is how to generate the optimal �̃�𝜃

for given 𝑬 and 𝑹. In other words, we must find �̃�𝜃 which
is closet to 𝑬 among all possible �̃�𝜃s. One possible way
is to formulate the minimization problem of the following
objective function 𝒥 with respect to {𝑗(𝑖), 𝑘(𝑖), 𝜃(𝑖)∣𝑖 =
1, . . . , 𝐼} subject to the five constraints of Section II-A and
Section III:

𝒥 =

𝐼∑
𝑖=1

∥𝒆𝑖 − 𝒓𝜃𝑖 ∥, (5)

where 𝒓𝜃𝑖 =
(
𝑥
𝜃(𝑖)
𝑗(𝑖), 𝑦

𝜃(𝑖)
𝑘(𝑖)

)𝑇

.
The optimization problem is an extended version of the

conventional elastic matching problem and thus solved effi-
ciently by dynamic programming (DP). Letting 𝑑𝑖(𝑗, 𝑘, 𝜃) =
∥𝒆𝑖 − 𝒓𝜃𝑖 ∥, the DP algorithm is organized as calculation of
the following recursive equation at all (𝑗, 𝑘, 𝜃) from 𝑖 = 1
to 𝐼:

𝑔𝑖(𝑗, 𝑘, 𝜃) = 𝑑𝑖(𝑗, 𝑘, 𝜃) + min
𝑗′,𝑘′,𝜃′

𝑔𝑖−1(𝑗
′, 𝑘′, 𝜃′), (6)

where (𝑗′, 𝑘′, 𝜃′) should satisfies all the constraints with
(𝑗, 𝑘, 𝜃). For example, 𝑗 − 𝑗′ ∈ {0, 1, 2} and ∣𝑗 − 𝑘∣ ≤ 𝐿.
Consequently, min𝑗,𝑘,𝜃 𝑔𝐼(𝑗, 𝑘, 𝜃) is the minimum matching
cost between 𝑬 and 𝑹 and the optimal {𝑗(𝑖), 𝑘(𝑖), 𝜃(𝑖)} is
given as a path of Fig. 4. The class of the reference pattern
giving the minimum matching cost becomes the recognition
result of 𝑬.

V. EXPERIMENTAL RESULTS

A. Qualitative Evaluation

An experiment has conducted to observe the ability of the
proposed model on generating deformation patterns. Specif-
ically, the DP-based elastic matching with the proposed
model was performed between a pair of digit patterns 𝑹
and 𝑬 from the same class. If �̃�𝜃 is close to 𝑬, it proves
that the proposed model can generate patterns close to actual
deformed patterns (i.e., patterns by human handwriting) in
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Figure 5. Generated pattern �̃�𝜃 (blue) optimally fitted the input pattern 𝑬 (red) under different values of the maximum lag 𝐿 and the maximum rotation
angle 𝜃max. The original pattern 𝑹 is shown at 𝐿 = 0.
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Figure 6. Patterns 𝑬 and 𝑹, and generated patterns �̃� and �̃�𝜃 .

the same class. Note that the public online digit database
called Ethem Alpaydin Digit was used for the experiment.

Figure 5 shows the results. The patterns under 𝐿 = 0 are
original patterns 𝑹 and 𝑬. Note that conventional elastic
matching methods, such as the DP-based elastic matching,
evaluates the geometric difference of those two original
patterns under the optimal point correspondence.

First, let us observe �̃� in Fig. 5, which are results by
elastic matching with the simple feature desynchronization
(or, equivalently, the enhanced model under 𝐿 ∕= 0 and
𝜃max = 0). A pair of “1” of Fig. 5 (a) clearly shows the
limit of the simple feature desynchronization because the
near-vertical stroke of “1” cannot change its direction largely
and there is still a significant difference between �̃� and
𝑬. A pair of “4” in Fig. 5 (b) shows that the ending part
of “4”, which is originally slanted and thus not parallel to
the 𝑥- or 𝑦-axis, was deformed to be fitted to 𝑬 with the
simple model. A larger 𝐿 provided a better fitting because
it will increase pattern generation ability. In contrast, it is
possible to observe a clear limitation of the simple model at
the beginning part of “4”; simply speaking, no point can be

generated outside of the bounding box of an original stroke
and thus the beginning part is unnaturally deformed like a
vertical stroke.

Second, let us observe �̃�𝜃 in Fig. 5, which are results elas-
tic matching with the enhanced feature desynchronization.
It is obvious that the pattern generation ability is increased
by the introduction of the adaptive rotation 𝜃(𝑖). The pattern
�̃�𝜃 of “1” no longer remains as a vertical stroke. The pattern
�̃�𝜃 of “4” shows a close fit to 𝑬 (even around its beginning
part) especially under 𝐿 = 5 and 𝜃max = 10. These two
results of Fig. 5 (a) and (b) prove the enhanced model can
generate patterns �̃�𝜃 close to actual deformed patterns 𝑬.

As expected, an overfitting phenomenon happened be-
tween patterns from different classes. Figure 5 (c) shows
an example of the overfitting, where a reference pattern 𝑹
of “2” is fitted to 𝑬 of “3” by using the higher pattern
generation ability of the proposed model.

One possible remedy to eliminate the overfitting in future
is to learn the optimal constraint parameters using training
patterns. For example, the adaptive lag 𝐿(𝑖) can be designed
for each class. In [1], a trial of training 𝐿(𝑖) have been made
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on the simple desynchronization model and an improvement
on eliminating the overfitting has been reported. The pro-
posed model has another parameter 𝜃(𝑖) to be learned. One
interesting future work is to investigate whether 𝜃(𝑖) is class-
dependent or writer-dependent. The latter comes from the
analogy between the adaptive rotation and the hand posture
as indicated in Fig. 1 (c).

Figure 6 shows other results between patterns of the same
class. In all results, �̃�𝜃 shows a closer fitting than �̃�. In
several cases (e.g., the upper examples of “6” and “8”),
�̃�𝜃 shows almost perfect fitting to 𝑬. Again, it should be
emphasized that those close fitting is realized just by feature
desynchronization and rotation.

B. Quantitative Evaluation

An online character recognition experiment has been
conducted, although the main purpose of this paper is to
propose a new generative model for interpreting deformation
of human handwriting and observe its deformation ability.
For each of 10 digit classes, 10 reference patterns were
selected from the training set of the database by k-means.
For the rotation angle limitation, 𝜃max was fixed at 20∘.
The adaptive lag limitation was also used. Its parameter
𝐿(𝑖)(𝑖 = 1, . . . , 𝐼) was determined for each reference
pattern as the maximum lag observed in desynchronization
matching results between training 300 pattern pairs from the
same category.

Figure 7 shows the recognition rates by the DP-based
elastic matching with the simple and the enhanced feature
desynchronization models. As expected, without the lag
limitation (i.e., 𝐿(𝑖) = ∞), the enhanced model shows a
poor performance because of the overfitting problem. The
performance was improved by limiting the lag by 𝐿(𝑖).
Under more severe lag limitation by 𝐿(𝑖)/2, the performance
by the enhanced model was further improved and slightly
better than the performance by the simple model. This
indicates that the adaptive rotation does not cause severe
overfitting if we set appropriate constraints. In this case, 28
samples turned to be recognized correctly by the enhanced
model, and 22 samples turned to be misrecognized.

VI. CONCLUSION

A new generative model based on enhanced feature
desynchronization has been proposed for modeling the de-

formations of human handwritings. An important point is
that the proposed model is based on a simple structural
and combinatorial framework. In spite of this simplicity,
the model can generate patterns close to actual deformed
patterns just from a single pattern. This fact has been proved
via several experimental results and, consequently, it has also
been proved that the enhanced feature desynchronization can
be treated as a handwriting model.

Future work will focus mainly on the following points.
∙ Class-dependent and writer-dependent characteristics

should be incorporated into the model. This can be
realized by learning the constraint parameters (e.g.,
𝐿(𝑖)) via some training steps.

∙ The variations in the resulting adaptive rotation angle
sequences 𝜃(1), . . . , 𝜃(𝑖), . . . , 𝜃(𝐼) should be observed
within a class or within a writer. Then, the relation
between the rotation angle and the hand posture should
be clarified.

∙ The enhanced desynchronization model should be fur-
ther extended toward the realization of accurate and
deformation-tolerant online character recognition sys-
tems. Again, the proposed desynchronization model
is simple and thus there are various ways for the
extension.
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