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Abstract—Handwritten text line segmentation on real-world
data presents significant challenges that cannot be overcome
by any single technique. Given the diversity of approaches and
the recent advances in ensemble-based combination for pattern
recognition problems, it is possible to improve the segmentation
performance by combining the outputs from different line finding
methods. In this paper, we propose a novel graph clustering-
based approach to combine the output of an ensemble of text
line segmentation algorithms. A weighted undirected graph is
constructed with nodes corresponding to connected components
and edge connecting pairs of connected components. Text line
segmentation is then posed as the problem of minimum cost
partitioning of the nodes in the graph such that each cluster cor-
responds to a unique line in the document image. Experimental
results on a challenging Arabic field dataset using the ensemble
method shows a relative gain of 18% in the F1 score over the
best individual method within the ensemble.

Keywords-text line segmentation; handwriting; ensemble
method; graph clustering;

I. INTRODUCTION

Text line segmentation of handwritten documents is one
of the most difficult problems in developing a reliable OCR
system. Unlike machine printed text, handwriting presents
unique challenges such as touching and overlapping compo-
nents, irregularity in geometrical properties of the line, such as
line width, height, etc. Although the performance of text line
segmentation methods have improved significantly in recent
years, the robustness of such systems on real-world field data
still has a large scope for improvement. For instance, a system
that reported 99.55% using the FM metric in ICDAR 2009
text line segmentation competition [1] achieved 56.1% using
the same metric on a field dataset that included low resolu-
tion, noisy Arabic handwritten and mixed-type documents. A
sample page from this corpus is shown in Fig. 1.

Fig. 1. Sample pre-processed document image from the field dataset used in
this work showing additional challenges such as foreground fragmentation.

Text line segmentation methods can be broadly categorized
into two classes: top-down and bottom-up methods. These in-
clude projection-based methods [2], smearing approaches [3],
grouping-based techniques [4], Hough transform-based algo-
rithms [5], and graph-based methods [6]. We refer the reader
to [7] for a review of existing offline handwritten text line
segmentation methods. Given the contrastive nature of the
various methods and the recent success in applying ensemble-
based combination for pattern recognition problems, it is
possible to explore solutions that harness the complementary
information within an ensemble framework.

Ensemble methods have been successfully applied in con-
tinuous speech recognition where, a system called ROVER
(Recognizer Output Voting Error Reduction) [8] was developed
to reduce the word error rate by aligning and combining
the results from multiple speech recognizers. In the context
of document recognition, a framework called StrCombo was
presented in [9] for numeric string recognition where, a graph-
based combination approach used each geometric segment of
the individual recognizers as a node in a graph. The best
path through this graph provided the final recognition result.
In isolated word recognition, Wang et al. [10] proposed an
approach where instead of using word classes, words were
treated as sequences of character classes. A combination
framework was presented which used a weighted opinion pool.
Many researchers have successfully ported the ideas proposed
in ROVER to the text recognition problem. Bertolami and
Bunke [11] addressed the problem of text recognition using an
ensemble of recognizers that were combined using ROVER.
In [12], Prasad et al. developed a videotext recognition system
that used ROVER for combining the hypotheses of a text
region from multiple frames in the video. A survey of existing
literature indicates that no study has proposed an ensemble
approach for handwritten text line segmentation.

Two issues important to practical application of ensemble
techniques are: (1) diversity among the individual methods
that constitute the ensemble, and (2) an adequate combination
strategy to exploit the results of different methods. In order
to address the first aspect of the problem, we chose two
top-down and two bottom-up approaches for our ensemble
generation. For the second and more challenging facet of
an ensemble method, we propose a data-driven combination
strategy that constructs a co-occurrence graph with nodes
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corresponding to connected components and edges connecting
pairs of connected components with associated cost of putting
the pair in the same line. The edge cost is determined by (1)
the cost for a false split and false merger, and (2) the likelihood
that a pair of connected components belong to the same
line conditioned on the ensemble output; these likelihoods
are learned during training. Text line segmentation is then
composed as the problem of minimum cost partitioning of the
nodes in the graph such that each cluster would correspond
to a unique line in the document image. A key benefit of this
method is that the number of clusters that denote text lines
need not be specified a priori.

The principle contribution of this work is: (1) the formula-
tion of an ensemble system as a graph clustering problem and
(2) the application of the method for combining the output of
multiple handwritten text line segmentation algorithms.

II. METHODS FOR TEXT LINE SEGMENTATION

In this section, we give a brief description of each line
finding algorithm that constitutes the ensemble in this work.

A. Top-down methods

(I) Piecewise projection profile based approach [2]:
In this method, lines were segmented based on piece-wise
horizontal projection profiles of the document obtained at
an interval determined by the average width of connected
components and the page width. Once the projection profiles
were obtained, initial set of candidate lines were generated
by connecting the valleys in the current profile to the closest
valley in the previous profile. For the unmapped valleys, a
straight line was continued from the valley. Using the initial set
of candidate lines, lines were drawn parallel. Any line drawn
may be obstructed by a handwritten component. A decision
was made to associate this component to the line above or
below through a Gaussian probability decision based on the
spatial proximity of the foreground pixels to the line.

(II) Directional filter based approach [13]: This method
is based on steerable directional filter, which found the local
orientation of a text line by scanning in multiple directions.
The maximum response from a convolution of the filter
with the image was the estimated direction of the text line.
Specifically, the algorithm had the following key steps: first,
a stroke segment that crossed a text line was automatically
detected. Next, a reference line for splitting touching lines was
estimated based on centers of gravity of the contours from the
detected lines. Finally, touching components were split at the
contour level and the character images were reconstructed.

B. Bottom-up methods

(III) Method based on filter banks and graph segmen-
tation [6]: The first stage of the algorithm applied a bank
of anisotropic Gaussian filters of different orientations and
scales. The second stage modeled the document as an undi-
rected weighted graph, where each connected component was
represented by a node in the graph. Affinity Propagation (AP)
method was then used to segment the graph. The advantage

of using AP is that the number of sub-graphs that denote text
lines need not be specified a priori.

(IV) Method based on baseline detection: In the first step
of this method, any small dots or diacritics like components
were removed from the input image. Then, baseline detection
was performed by computing candidate lines that passed
through text characters and the line that picked the most
number of text pixels on its way was chosen. All connected
components that passed through this line were marked so
that in the next iteration these components were not included
into the voting process. In order to prevent detection of
false baselines, a dynamic threshold was estimated for the
vote, which depended on the average text line length in the
document. Once all baselines were estimated, text characters
which were still unmarked were associated to the closest
baseline. In the last step, diacritics were linked to the closest
text character.

III. GRAPH CLUSTERING-BASED ENSEMBLE METHOD

In this section, we describe the approach in terms of the
structure of the graph on the document images’ connected
components, the edge-costs for the graph from the ensemble
algorithms, and clustering the nodes in the graph to obtain text
lines.

A. Structure of the graph

We construct a weighted undirected graph with nodes cor-
responding to connected components in the document image.
Text line segmentation is coined as the problem of cluster-
ing the nodes in the graph. Let the constructed graph be
G = (V,E). The graph’s vertices are V = {vi}n

i=1 where vi

corresponds to the ith connected component in the document
image, and n is the number of connected components. Let the
edges be E = {ei,j |vi, vj ∈ V }, and the cost associated with
edge ei,j be denoted by wi,j . Cost of edges not present in the
graph are by default 0.

The edges in graph, G, are determined by the pixel overlap
between the connected components in the image and the
line segmentations computed by the ensemble of algorithms.
To this end, we first construct an adjacency matrix on the
connected components for each algorithm in the ensemble.
Next, the resultant adjacency matrices are collapsed into one
graph G for the clustering. Two nodes vi and vj in G are
connected with an edge if at least one algorithm in the
ensemble puts them in the same line, or if vi and vj have
a common neighbor in lines of two different algorithms. The
formal definition is given below.

Let A denote a line finding algorithm, i.e. one of the 4
previously mentioned. Let LA be the set of lines computed by
algorithm A, LA = {L|L ⊂ Ω}, where Ω is the set of image
pixels. Let M be the set of connected components in the im-
age, with a one to one correspondence between the connected
components and graph nodes, M = {Mi|Mi ⊂ Ω ∧ vi ∈ V }.

For each algorithm A, a labelling, NA, is defined on the
connected components based on the pixel overlap between the
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connected components and the lines computed by A:

NA(vi) = arg max
L∈LA

|Mi ∩ L|
|Mi ∪ L|

(1)

The labelling of the connected components by an algorithm A
induces an adjacency matrix EA on the connected components

EA(j, i) = EA(i, j) =
{

1 : NA(i) = NA(j)
0 : otherwise (2)

The edges of G are defined as

E = {ei,j |∃A : EA(i, j) = 1} ∪
{ei,j |∃A,B, k : EA(i, k) = EB(j, k) = 1} (3)

B. Cost of the graph edges

The cost of edge ei,j is determined by:
• estimated likelihood that the two connected components

vi and vj should indeed belong to the same line, referred
to as pi,j . The pi,j’s depend upon the document image
and are computed from the output of the ensemble of
segmentation algorithms.

• cost of making false merger and false split errors. This is
a parameter that can be used to trade-off between mergers
and splits among the lines.

To estimate the likelihood of two connected components,
vi and vj , to belong to the same line, let us define a feature
vector of their grouping according to the ensemble algorithms.
Formally,

xi,j = 〈EI(i, j), EII(i, j), EIII(i, j), EIV(i, j)〉

For instance, if algorithms I and III put vi and vj in the same
line and algorithms II and IV put them in distinct lines then
xi,j = 〈1, 0, 1, 0〉.

The likelihood of vi and vj belonging to the same line, pi,j ,
is determined by the likelihood conditioned on the ensemble
feature vector

pi,j =
∑
y

P (vi and vj in same line|xi,j = y)P (xi,j = y)

For an ensemble of 4 algorithms, y can attain 24 possible
values. We use the training data to learn the conditional
likelihood of any pair of connected components to belong to
the same line given the output of the ensemble algorithms:

P (u and v in same line|xu,v = y) =
]events[xu,v = y ∧Groundtruth u and v in same line]

]events[xu,v = y]
(4)

We set P (xi,j = y) = 1 for the output combination generated
by the ensemble for vi and vj , and 0 for the rest of the possible
combinations.

This data-driven approach has the following advantages:
• For novel datasets, it is difficult to predict the perfor-

mance of individual line segmentation algorithms used in
the ensemble. Observing the success rates on the training

data helps tune the edges costs to peculiarities of the
dataset.

• Learning the likelihoods on the combined output of the
ensemble captures how different combinations of the
ensemble algorithms work. For instance, is it the case
that when algorithms II and IV put vi and vj in same
line, then they are highly likely to be correct?

Our application has more than 40,000 text lines in training
data; this amount of data easily allows for learning 24 = 16
combinations using eq.(4). However, if the number of algo-
rithms in the ensemble is large, say > 10, then learning a joint
likelihood on the entire ensemble would require large amounts
of training data. In such cases, it is possible to learn the
likelihoods conditioned on subsets of the ensemble algorithms.
This is not addressed in this paper and will be explored in
future work. In this work, the estimated pi,j’s ranged from
0.01 for xi,j = 〈0, 0, 0, 0〉 to 0.86 for xi,j = 〈1, 1, 1, 1〉.

Let the pairwise costs of merge/split decisions be:

Automatic clustering Ground-truth vi and vj in
puts vi and vj in distinct line same line

same line λ0,0 λ0,1

distinct line λ1,0 λ1,1

Here, λ1,0 > 0 and λ0,1 > 0 are the cost of false
splits and false mergers, respectively. Similarly, λ0,0 < 0
and λ1,1 < 0 are the benefit of correct splits and correct
mergers, respectively. The estimated cost of putting connected
components, vi and vj , in the same line is pi,jλ1,1 + (1 −
pi,j)λ1,0. Similarly, the estimated cost of putting them in
distinct lines is pi,jλ0,1 + (1 − pi,j)λ0,0. For simplicity, we
set λ0,1 = λ1,0 = −λ0,0 = −λ1,1 = λ. This results in the
estimated cost of putting nodes, vi and vj , in the same lines
as wi,j = (1− 2pi,j)λ.

C. Clustering the graph nodes

The problem is to partition the nodes into C = {Ck} subsets
so as to optimize the following:

min :
∑
C∈C

∑
vi,vj∈C

wi,j

s.t. : Ck ∩ Cl = φ ∀Ck, Cl ∈ C
∧ ⋃

C∈C
C = V (5)

When the number of clusters, |C|, is known then this can
be viewed as a k-min cut problem, which has a polynomial
time algorithm for non-negative weights and known k. In
our application, the number of lines in the image (number
of clusters) is not known a-priori. Moreover, it is important
to have both “must-link” (negative cost) and “don’t-link”
(positive cost) constraints. Finding the minimal cut is NP-Hard
if the weights can be negative or when the number of clusters
is unknown, making it unsuitable for the problem.

In general, the above optimization is a Quadratic Semi-
Assignment Problem (QSAP) [14], known to be NP-Hard.
Charikar presented semi-definite programming (SDP) and
linear programming (LP) relaxations to the cluster problem
in [15]. The LP formulation has the advantage of naturally
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handling positive and negative weights, and not requiring a-
priori knowledge of number of clusters. Vitaladevuni and Basri
adapted the LP relaxation to the problem of co-clustering
image segments in [16]. In particular, they modified the LP re-
laxation for practical applications involving thousands of graph
nodes, referred to as LP-reduced (LP-R). Experiments reported
in [16] indicate that LP-R outperforms alternative such as
thresholding the adjacency matrix, Normalized cuts [17], Nor-
malized cuts with negative weights [18], and the SDP-based
approach.

The LP-reduced (LP-R) formulation constructs a metric
space of distances between the graph nodes induced by
clustering. Let di,j denote the distance between nodes vi and
vj in the cluster space. If di,j = 0, they are put in the
same cluster; if di,j = 1, they are put in distinct clusters.
Thus, the set of distances between all pairs of nodes defines
the clustering. Metric properties of positivity, symmetry, and
triangular inequality are enforced through linear inequalities.
The LP-R relaxation of the optimization in eq.(5) is:

max :
∑
i,j

wi,jdi,j

s.t. : 0 ≤ di,j ≤ 1 , di,j = dj,i , di,i = 0
di,j ≤ di,k + dk,j ∀ei,j , ei,k and ek,j ∈ E (6)

Ideally, we would like the distances computed as a solution
to LP-R in eq.(6) to be binary. However, linear programs do
not guarantee integral solutions unless the constraint matrix is
Totally Unimodular (TUM). It can be shown that in general
the constraint matrix in eq.(6) is not TUM [16]. Generating
a binary solution from a given real-valued LP solution while
maintaining optimality is NP-Hard. However, in practice, the
LP solutions generated in our application were very sparse,
with predominantly binary values. In all our experiments, a
simple thresholding at 0.6 was used to convert real-valued
solutions to binary values. This is along the lines of empirical
observations in [16].

When the cost/benefit of mergers and splits is set at
λ0,1 = λ1,0 = −λ0,0 = −λ1,1 = λ, the optimization
function in eq.(6) becomes λ

∑
i,j(1 − 2pi,j)di,j . Thus, the

λ parameter has no effect and is set to λ = 1. In practical
handwriting recognition tasks, the cost parameters will be
useful for trade-off between false splits and mergers, which
is important for optimizing recognition performance. We will
explore individually varying λ1,0, λ0,1, etc. and their effect on
word error rates in future work.

IV. EXPERIMENTAL RESULTS

The experiments were conducted on field data which con-
sisted of 2477 Arabic handwritten and mixed-type (machine
print and handwritten) pages scanned at 200 dpi. The pages
can be characterized by high levels of noise and foreground
fragmentation making the segmentation task highly challeng-
ing. The dataset was split into training, validation, and testing
sets that included 2077, 200, and 200 pages, respectively. The
test set has 3352 text lines in total.

Prior to text line segmentation, we cleaned the artifacts
in the input image by first removing the background noise
through basic morphological filters. In the next step, we
detected rule lines in the image, used them to detect and
correct the skew, and finally removed pixels belonging to
ruled lines, while preserving those that belonged to the glyph
element.

We evaluated the line segmentation algorithms using the
protocol established in [1] that computes precision and recall
metrics by finding one-to-one mapping between the truth lines
and the system hypothesized lines. The mapping function was
pixel-based where a minimum fraction of overlap was required
in order to declare a hit. We used 0.9 as the threshold for the
overlap ratio in our experiments. We also report the F1 score
which is the harmonic mean of the precision and the recall.

Table I shows the precision, the recall, and the F1 scores
for each of the individual algorithms and the ensemble method
on the test set. We observe 20% relative gain in precision
and 9.4% relative gain in recall when compared to the
corresponding best numbers. When pitched against the single
best system within the ensemble in terms of the F1 score, we
observe a relative gain of 26.3%, 11.1%, and 18.3% in the
precision, recall, and F1 scores respectively.

TABLE I
TEXT LINE SEGMENTATION RESULTS ON FIELD DATA.

Method Precision Recall F1 score
Projection profile [2] 52% 61% 0.561
Steerable filter [13] 50% 64% 0.561
Graph segmentation [6] 60% 53% 0.563
Method based on baselines 57% 63% 0.599
Ensemble 72% 70% 0.710

Fig. 2 presents the output of each individual algorithm
within the ensemble, the associated errors in their output, and
the output of the ensemble method. We see that there are
significant errors in the output of the constituent algorithms –
projection profile method is predominantly fragmented, steer-
able filter technique is largely fused, and both the bottom-up
approaches have a mix of fragmentation and merge errors. On
the other hand, the ensemble method surmounts these errors
by efficiently integrating the individual decisions.

We made the following observations by analyzing the results
on the individual pages:

• The ranking of the individual member’s performance
considerably varies across the dataset. More importantly,
a single method does not outperform the other methods
consistently. This reiterates the need to apply an ensemble
approach.

• If we treat the best output from an individual method for
a page as the result of a page-level Oracle, the ensemble
method either surpasses or equals the Oracle performance
on 89% of the pages in the test set. On 11% of the
pages, we noticed that the output of majority of ensemble
members is degraded to an extent where the combination
does not overcome the individual errors produced by
them.
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Projection profile

Steerable filter

Graph segmentation

Method based on baselines

Ensemble

Reference lines

Fig. 2. Output of individual algorithms and the combination method on a
sample page (text lines are color-coded for better illustration).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a novel graph clustering
based ensemble method for combining the output of multiple
line segmentation algorithms. The method was applied to a
large corpus of real-world Arabic handwritten and mixed-type
document images and showed significant improvements in the
precision and recall metrics when compared to the individual
line finding methods. By allowing a soft combination of
outputs using likelihood estimates, the framework provides the
flexibility to adapt the confidence associated with an ensemble
member for diverse datasets. Future work includes scaling to
large ensembles and estimating the optimal trade-off between
false splits and merges w.r.t. the word error rate.
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