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Abstract—In this paper, we present a template based ap-
proach to the segmentation of touching components in hand-
written text lines. Local patches around touching components
are identified and a dictionary is created consisting of template
patches together with their correct segmentations. We use two
shape context based methods to compute similarity between
input patches and dictionary templates to find the best match.
The template’s known segmentation is then transformed to
segment the input patch. Experiments are carried on a dataset
of touching text lines.
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I. INTRODUCTION

Segmentation at the line level is typically required by
handwritten text recognition system, and when touching
components affect line segmentation, recognition failure
may result. The separation of touching components in
general has been addressed extensively in the literature
where they are typically segmented according to character
size, profile, or junction points [1]. There are two pri-
mary approaches to the segmentation of touching charac-
ters, recognition-free and recognition-based. Recognition-
free segmentation techniques use contour, skeleton and pro-
jection profile analysis[2-10] and use only structural infor-
mation. These empirical methods may efficiently address
some touching problems but may not be robust enough
to handle a lot of variation or uncertainty. Recognition-
based segmentation usually generates multiple candidate
segmentation hypotheses and selects the optimal one based
on recognition [11][12][13] or other evaluation functions
[14][15][16]. These methods incorporate recognition-free
segmentation and succeed only when the correct segmen-
tation is in one of the candidates.

Figure 1: Local Touching Patch (in red box)

Despite a great deal of irregularity in touching hand-
written text, we feel knowledge of the language can be

exploited to define a trainable approach to segmentation.
Some researchers categorize touching patterns [5][6][9] and
make specific rules for handling each. In reality, more
configurations are often possible, and it is necessary to
generalize the categorization and corresponding strategy.

In this paper we propose a template based segmentation
framework for touching handwritten text. In our approach
we focus on the stage after text line detection by assuming
the method of Kumar[17] is able to obtain Local Touching
Patches (LTPs), as illustrated in Fig. 1. An LTP is the
localized bitmap containing the touching strokes and usually
only covers part of connected components shared by two
different lines. Inspired by the localization of human body
joints in [18], the proposed approach is based on the fact
that if we know the correct segmentations of dictionary
templates through training, we can segment similar LTPs
accordingly. The key is that a common strategy must be
applied, instead of designing individual rules for individual
templates. In this way, segmentation can be trained for
different languages, for example. The proposed approach
uses a training and testing framework. In the training stage
a dictionary is built from template LTPs and their correct
segmentations. A correct segmentation is expressed as two
patches of isolated components that comprise the LTP. In
the testing stage, an LTP is compared to templates in the
dictionary using shape context [19] or inner-distance shape
context [20] to find the most similar one. Thin-plate-spline
(TPS) [21] transform is calculated from the template to the
input LTP to transform that template’s known segmentation
and obtain the input LTP’s segmentation.

II. PROPOSED APPROACH

A. Dictionary Construction

The dictionary is built with the intent of covering the
maximum possible number of touching configurations and
is built to minimize the time for a input LTP to find
the most similar template. Typically, this will be language
dependent. In the proposed approach it is computationally
expensive to obtain similarity between two LTPs. To re-
duce the computation load, we employ vector quantization
[22]. Templates in dictionary are organized into clusters
through Affinity Propagation [23], and clusters and their
exemplars (i.e. centroids) are deterministically generated
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Figure 2: Process of template based segmentation

without prescribing the number of clusters. This is preferable
because it is impossible to tell how many clusters should
be obtained from the touching patterns. For an input LTP
we first find the exemplar that has the greatest similarity,
and then search the corresponding cluster to find the most
similar template. This two-level structure reduces the search
time from O(N) to O(N

1
2 ). To further improve efficiency,

a multi-level structure can be applied.
Exemplars naturally serve as representatives of different

touching configurations. It is reasonable to do segmenta-
tion with a dictionary containing only exemplars, which is
economical and reduces the chance of overfitting. In the
experiments section we will compare the performance of
the two kinds of dictionaries, full and exemplars-only.

B. Shape Matching

For matching two LTPs, we compare two methods: shape
contexts with thin-plate-spline (SC+TPS) by Belongie et
al.[19] and inner-distance shape context with dynamic pro-
gramming (IDSC+DP) by Lin et al.[20].

Shape context characterizes the spatial distribution of
sample points on the contour of a shape. For each point,
it counts the number of other points in a uniform log-
polar lattice and produces a histogram. Through distance
normalization and relative orientation, it achieves scale and
rotation invariance in describing shapes. The distance be-
tween two shape context histograms is defined by a χ2 test.
For shape comparison, an iterative scheme comprised of
bipartite matching and TPS is used. The distance DSC+TPS

between two shapes is measured as a weighted sum of three

terms
DSC+TPS = 1.6Dac +Dsc + 0.3Dbe (1)

where Dac denotes appearance cost, Dsc denotes shape
context cost, and Dbe denotes TPS bending energy.

The inner-distance shape context augments the shape con-
text for better description of part structure and articulation.
It replaces the Euclidean distance with the length of shortest
path within the shape boundary. Dynamic programming
is used to match two sets of points and the distance
DIDSC+DP between two shapes is determined only by the
inner-distance shape context cost Didsc

DIDSC+DP = Didsc (2)

In the proposed segmentation framework, shape similarity
S is defined as the negation of the shape distance

S = −DSC+TPS or S = −DIDSC+DP (3)

which is intuitive and convenient for the affinity propagation
clustering.

C. Segmentation
During the segmentation stage, we hierarchically compare

the dictionary templates and the input LTPs. Input LTPs are
segmented according to the segmentation of its matching
templates. Assume Pinput and Ptemplate are the point sets
of input LTP and its best matching template respectively.
Through a few iterations of bipartite matching and TPS
we find the parameter θ of TPS transform T (·) that warps
Ptemplate into Pinput

Pinput ≈ T (θ; Ptemplate) (4)

where ≈ means resemblance with tolerance to some error.
Let Ca and Cb denote contours of two isolated components
in template’s segmentation. Then the deformed contours C ′

a

and C ′
b are defined as

C ′
a = T (θ; Ca) (5)
C ′

b = T (θ; Cb) (6)

Then a natural judgment is that the foreground pixels
of input LTP that fall into different deformed contours
belong to different components, and the overlapping region
belongs to both components. By allowing two components
to share a common area, we have a better chance of restoring
the original appearance of the text, compared to cutting
the foreground into non-overlapping parts. We assign those
pixels outside both deformed contours to the nearest stroke.
Fig. 2 illustrates the segmentation process.

The advantage of this segmentation strategy is that it
handles all cases in one framework, rather than applying dif-
ferent rules for different configurations. In addition, scaling
to new patterns in the dictionary is easy in this framework.
When new touching types are observed, we simply add
sample LTPs to the dictionary and rerun clustering .

570570



III. EXPERIMENTAL RESULTS

Previously there were no available handwritten text
dataset that has ground truth for touching or overlapping
components, so we created a dataset by varying the distance
between existing text lines and recorded interactions. The
source is 250 Arabic handwritten text binary images with
ground truth. We reduced the spacing between text lines in
each image until neighboring lines touched each other, in the
similar fashion employed by Kumar et al.[24], and extracted
LTPs with size 120× 120 at where touching occurred. The
patch size is fixed for simplicity, since the stoke width is
quite consistent across the dataset. Each correct segmenta-
tion includes two isolated component patches which have
same size as the LTPs, created at the same time according
to the pixel level ground truth for the source images.

From these LTPs we form a training set and a testing set,
each having 744 samples. We set parameters for SC+TPS
and IDSC+DP according to [19] and [20]. But unlike [19],
our experiments use a distance between shapes that only
involves the shape context cost and bending energy

DSC+TPS = Dsc + 0.3Dbe (7)

The appearance cost is not used since we believe these
binary document images contain very little color and texture
information, and computing appearance cost brings rela-
tively large work load.

Figure 3: Template LTPs are organized into clusters.

Evaluation of segmentation performance is not straight-
forward. Even if a few pixels are wrongly assigned, it may
still be a good segmentation. An indirect but reasonable rule
is that the segmentation is acceptable if recognition gives the
correct result, but this requires a very accurate recognizer.
In practice we use the MatchScore method [25]. Assume the
input LTP is segmented into two components QA and QB ,
each in an image of the same size as the input LTP. They
are compared to the input LTP’s ground truth segmentation
which are components of GA and GB respectively. For each

(a)

(b)

Figure 4: Accuracy under 5 numbers of clusters on (a)exemplar-
only dictionary (b) full dictionary.

LTP’s segmentation result we compute the MatchScore (MS)
that is defined as :

MatchScore =
2×MSA ×MSB

MSA +MSB
(8)

MSA =
area(QA

⋂
GA)

area(QA

⋃
GA)

(9)

MSB =
area(QB

⋂
GB)

area(QB

⋃
GB)

(10)

where area(·) calculates the foreground area of a binary
image patch. We set a threshold for the MatchScore, where
values greater than the threshold are treated as correct
segmentation and less than it incorrect. Define accuracy as
the ratio of correctly segmented LTPs among all testing
LTPs, and the accuracy is expected to rise as the threshold
of MatchScore decreases.

We explore the segmentation performance on two kinds
of dictionaries with different number of clusters, and then
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(a) (b)

Figure 5: (a)Correct(MatchScore > 0.80) segmentation samples by SC+TPS. (b)Corresponding results by IDSC+DP. Purple areas are
shared by both blue and red components.

analyze the results.
1) Number of Clusters: For simplicity, only SC+TPS is

used to obtain similarities between training shapes and to
construct the dictionary. Through clustering, similar template
LTPs are grouped together, as shown in Fig. 4. Quantizing
the dictionary improves search efficiency but may lead to
non-globally optimal matching, thus it is worth careful
consideration. The number of clusters can be adjusted in
Affinity Propagation by modifying the preference values for
the input samples. The total number of training samples
is fixed, thus a greater number of clusters corresponds to
a smaller average cluster size. We ran the SC+TPS shape
matching and segmentation on the training data itself under
five different numbers of clusters for both full and exemplar-
only dictionary. Accuracy curves are shown in Fig. 4. We
can see for exemplar-only dictionaries the accuracy is higher
when more clusters are used. However in full dictionaries
the worst performance occurs with 52 clusters rather than
20. This is reasonable since as the number of clusters
decreases, more in-cluster searches will be conducted. The
two extremes are equivalent: a single cluster containing all
samples and each sample being a cluster. In the following
experiments we choose the 231 cluster dictionary, which is
a trade-off between performance and efficiency.

2) Full Dictionary vs. Exemplar-only: Table I shows
the results on the testing set. Although the full dictionary
performs better than the exemplar-only dictionary on training

Table I: Test Results with MatchScore Threshold 0.80

dictionary accuracy
SC+TPS IDSC+DP

full 0.696 0.563
exemplar-only 0.714 0.555

set according to Fig. 4, no significant advantage is observed
from the results of testing set, and for SC+TPS the exemplar-
only beats the full dictionary. We suspect this is because the
full dictionary overfits the training data. The results also
demonstrate that exemplars are capable of characterizing
touching configurations and therefore using a full dictionary
is unnecessary. We also notice that SC+TPS outperforms
IDSC+DP at this task.

3) Correct Segmentations and Errors: Fig. 5 shows sev-
eral correct (MatchScore ≥ 0.80) segmentation samples
obtained through SC+TPS and their corresponding results
with IDSC+DP. From Fig. 5(a) we see the templates’
segmentations are properly transformed to mark conterparts
in input LTPs. Despite disparities between input LTPs and
matching templates, reasonable segmentations towards dif-
ferent touching types are obtained. Comparing Fig. 5(a)
and (b), we see SC+TPS indeed finds better templates
than IDSC+DP. There are also a number of segmentation
errors(MatchScore < 0.80), as illustrated in Fig. 6. The
reasons are fourfold. First, for a very unusual input LTP no
proper template can be found. Second, ambiguity exists so

572572



Figure 6: Four kinds of segmentation errors. (a) Bad template.
(b)Ambiguity. (c)Noise (disturbing components). (d) Transform
deviation.

that the most similar template may not be the right one.
Third, noise (disturbing components) causes mismatches.
Fourth, although a similar template is found, the TPS
transform can not mark corresponding components very
accurately.

IV. CONCLUSION

We have presented a new approach for segmenting touch-
ing components in handwritten text lines. The key point
of our approach is to build a dictionary of local touch-
ing patches and transform the template’s segmentation to
segment input touching patch. Experiments show various
touching patches are reasonably segmented, and cluster
exemplars are enough for constructing a dictionary that
represent different touching types.
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