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Abstract—In this paper, a novel rejection strategy is pro-
posed to optimize the reliability of a handwritten word recog-
nition system. The proposed approach is based on several steps.
First, we combine the outputs of several HMM classifiers using
the Dempster-Shafer theory (DST). Then, we take advantage of
the expressivity of mass functions (the counter part of probabil-
ity distributions in DST) to characterize the quality/reliability
of the classification. Finally, we use this characterization to
decide whether a test word is rejected or not. Experiments
carried out on RIMES and IFN/ENIT datasets show that the
proposed approach outperforms other state-of-the-art rejection
methods.

Keywords-Dempster-Shafer theory; Data fusion; Rejection
strategy; Handwriting recognition

I. INTRODUCTION

After about forty years of research in off-line handwriting

recognition, the performances of current systems are still in-

sufficient, as for many applications, more robust recognition

is required. Multiple classifier combination has been inten-

sively studied with the aim of overcoming the limitations

of individual classifiers [1], [2], [3]. Most of these research

works stress the real interest of the Dempster-Shafer Theory

(DST) [4], [5] to combine classifiers in a manner which

is both accurate and robust to difficult conditions (set of

weak classifiers, degenerated training phase, overly specific

training sets, large vocabulary, etc.). In this context, we have

shown in previous works of ours [6], [7], that ensemble clas-

sification methods based on DST outperform the classical

combination methods, as they provide higher recognition

rates. However, in the overall recognition process, high

recognition rates is not the only measure to characterize the

quality of a recognition system. For practical applications,

it is also important to look at reliability. Rejection strategies

are able to improve the reliability of handwriting recogni-

tion systems. Contrarily to classifier combination, rejection

strategies do not increase the recognition rate but, at least,

reduce the number of errors and suggests an alternative

treatment of the rejected samples [8], [9], [10]. The rejection

strategies are typically based on a confidence measure. If

the confidence measure exceeds a specific threshold, the

recognition result is accepted. Otherwise, it is rejected.

Generally, this rejection may occur as 1) more than one

word appears adequate; 2) no word appears adequate.

In [10], varieties of rejection thresholds including global,

class-dependent and hypothesis-dependent thresholds are

proposed to improve the reliability in recognizing uncon-

strained handwritten words. In [9], the authors present

several confidence measures and a neural network to either

accept or reject word hypothesis lists for the recognition

of courtesy check amounts. In [11], a general methodology

for detecting and reducing the errors in a handwriting

recognition task is proposed. The methodology is based on

confidence modeling and its main originality is the use of

two parallel classifiers for error assessment. In [12], the

authors propose multiple rejection thresholds to verify hand-

written word recognized hypotheses. To tune these rejection

thresholds, an algorithm based on dynamic programming is

proposed. It focuses on maximizing the recognition rate for

a given prefixed error rate.

In this paper, we propose a new rejection strategy based

on the Dempster-Shafer theory. In fact, mass functions (the

central object of DST) are more complex objects than

discrete probabilities, which allow for a richer description

of the knowledge they encode. Thus, our aim is to exploit

this additional information to derive some measures adapted

to rejection strategies. More precisely, we use the DST to

improve the recognition rate of a classification process, by

combining several probabilistic classifiers (HMM classifiers)

within the formalism of DST. The result of the combination

being expressed as a mass function, we aim at using the extra

available information to derive an efficient rejection strategy,

and thus, improving the reliability of the recognition.

The paper is organized as follows: in section 2, we present

some classical rates for the evaluation of rejection strategies,

a background review on the basis of the Dempster-Shafer

Theory and we recall the different steps of the DST-based

ensemble classification method that we have presented in a

previous work. Section 3 addresses in detail the proposed re-

jection strategies. In section 4, we evaluate the performance

of the proposed approach. The conclusions of this paper are

presented in the last section.

II. BACKGROUND

In this section, we first recall the classical rates involved

in the evaluation of a rejection strategy. Then, we present
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the Dempster-Shafer Theory. Finally, we recall a previous

work of ours on ensemble classification.

A. Evaluation of rejection strategies

Let us consider a testing set of Ntest words. We have:

Ntest =

Nproc︷ ︸︸ ︷
Nrec +Nerr +Nrejhit +Nrejmiss︸ ︷︷ ︸

Nrej

= Nhit +Nmis

where Nrec is the number of correctly classified words, Nerr

is the number of incorrectly classified words, and Nrej is

the number of words which are not classified, as they have

been rejected. The latter are divided into Nrejhit, the number

of words that would have been correctly classified if not

rejected, and Nrejmiss, the number of words that would have

been misclassified if processed. Finally, Nproc is the number

of words which have been processed (i.e. not rejected),

and Nhit and Nmis corresponds to the number of words

that would have been respectively correctly and incorrectly

classified in case of absence of rejection strategies. Then,

the following rates are classically defined:

Recognition Rate =
Nrec

Ntest

Error Rate =
Nerr

Ntest

Rejection Rate =
Nrej

Ntest
=

Nrej

Nrej +Nproc

Reliability =
Nrec

Nproc
=

Recognition Rate

1− Rejection Rate

True Rejection Rate =
Nrejmis

Nmis

False Rejection Rate =
Nrejhit

Nhit

B. Dempster-Shafer theory

Let Ω = {ω1, ..., ωK} be a finite set, called the frame,

or the state-space, made of exclusive and exhaustive classes

(for instance, the words of a lexicon). A mass function m
is defined on the powerset of Ω, noted P(Ω) and it maps

onto [0, 1] so that
∑

A⊆Ω m (A) = 1 and m(∅) = 0. Then,

a mass function is roughly a probability function defined

on P(Ω) rather than on Ω. Of course, it provides a richer

description, as the support of the function is greater: If |Ω|
is the cardinality of Ω, then P(Ω) contains 2|Ω| elements.

It is possible to define several other functions which are

equivalent to m by the use of sums or Möbius inversions.

The belief function bel is defined by:

bel (A) =
∑

B⊆A,B �=∅
m (B) , ∀A ⊆ Ω (1)

Roughly, bel (A) corresponds to the probability of all the

evidence which implies A. Thus, it corresponds to the lower

bound of the subjective probabilities which are consistent

with the available evidence. Dually, the plausibility function

pl is defined by :

pl (A) =
∑

B∩A �=∅
m (B) , ∀A ⊆ Ω (2)

It corresponds to a probabilistic upper bound (all the items of

evidence which do not contradict A). Consequently, pl(A)−
bel(A) measures the imprecision associated to the subset A
of Ω.

A subset F ⊆ Ω such that m (F ) > 0 is called a focal
element of m. If the c focal elements of m are nested (F1 ⊆
F2 ⊆ . . . ⊆ Fc), m is said to be consonant.

Two mass functions m1 and m2, based on the evidence

of two independent and reliable sources, can be combined

into a new mass function by the use of the conjunctive
combination, noted ∩©. It is defined ∀A ⊆ Ω as:

[m1 ∩©m2] (A) =
1

1−K12

∑

B∩C=A

m1 (B) ·m2 (C) (3)

where K12 =
∑

B∩C=∅
m1 (B) ·m2 (C) measures the conflict

between m1 and m2. K12 is called the mass of conflict.
The most classical way to convert a mass function onto a

probability (for instance, to make a decision), is to use the

pignistic transform [5]. Intuitively, it is based on the idea

that the imprecision encoded in the mass function should

be shared equally among the possible outcomes, as there is

no reason to promote one of them rather than the others.

If |A| is the cardinality of the subset A ⊆ Ω, the pignistic
probability m of m is defined as:

m (ωi) =
∑
A�ωi

m (A)

|A| ∀ωi ∈ Ω (4)

Dually, it is possible to convert a probability distribution

onto a mass function. The inverse pignistic transform
[13] converts an initial probability distribution p into a

consonant mass function. The resulting consonant mass

function, denoted by p̂, is built as follows: First, the ele-

ments of Ω are ranked by decreasing probabilities such that

p(ω1) ≥ . . . ≥ p(ω|Ω|). Second, we define p̂ as:

p̂
({

ω1, ω2, . . . , ω|Ω|
})

= p̂ (Ω) = |Ω| × p(ω|Ω|) (5)

∀ i < |Ω|, p̂ ({ω1, ω2, . . . , ωi}) = i× [p(ωi)− p(ωi+1)]

p̂ (.) = 0 otherwise.

It is possible to take into account the reliability of a source

of information by discounting it. The simple discounting
αm of m is defined as:

αm(A) = (1− α) ·m(A), ∀A ⊂ Ω
αm(Ω) = (1− α) ·m(Ω) + α (6)

529529



Given a mass function m, it is possible to compute its

pignistic transform m, which is a probability distribution,

then, to apply the inverse pignistic transform, to compute

m̂, which is a consonant mass function having the same

pignistic transform as m. Practically, the interest of com-

puting m̂ from m has been recently shown in [14]. As a

matter of fact, the corresponding operation is interesting

to discount a source of information (as an alternative to

the simple discounting), and it has been named pignistic
discounting.

C. DST-based ensemble combination method

Here, we summarize previous works of ours to derive

an efficient ensemble classification technique based on the

use of DST [6], [7]. We dispose of three HMM classifiers,

each working on different feature sets: upper contour, lower

contour and density. Our aim is to combine the outputs of

these HMM classifiers in the best way.

To do so, we apply the following procedure: The first step

consists of defining the frame Ω. In the case of handwritten

word recognition, the set of classes (lexicon) is of a very

high size with respect to the cardinality of the state space in

classical DST problems: Practically, P(Ω) contains 2|Ω|− 1
elements, which is intractable for a large set of classes. To

face this computational issue, the state-space is dynamically

defined according to the length of the list provided by each

classifier. See [6] for more details on the dynamic definition

of the state-space. Second, for each of the three classifiers,

we normalize the log-likelihood distribution it provides, by

using a sigmoid function, such as described in [7]. As a

result, we have three sets of scores, which sum up to one

over the set of classes. Thus they behave as three probability

distributions over Ω. Third, a mass function is derived from

each of the three probability distributions, by use of the

inverse pignistic transform. Fourth, the Recognition Rates

of the classifiers (derived from a cross-validation procedure)

are used to weight each mass function according to the

reliability of each classifier using a simple discounting.

Then, the three mass functions are combined together using

the conjunctive combination. Finally, a pignistic transform

is applied, and the so-derived probability values are sorted

decreasingly to provide the N best word hypotheses (the

TOP N List).

This method outperforms classical combination methods

which are used as references in the state of the art: We have

conducted in [6] several detailed comparisons, as well as a

test of significance on several datasets, and the differences

of performances are always significant with immaterial p-

values (< 0.1%).

III. PROPOSED REJECTION STRATEGIES

In this section, we introduce two measures to a priori
estimate the validity of the classification of a test word.

A. The measure of conflict

For a dedicated word, the first measure aims at quantifying

the conflict among the evidence that has led to the classifi-

cation. Intuitively, a high measure of conflict is supposed to

correspond to a situation where it is sounded to reject the

item, as there is contradictory information, whereas, a low

measure of conflict indicates that the evidence concurs, and

that rejection should not be considered. Several measures are

available to quantify the conflict between several sources

(such as described in [15]), among which, the mass of
conflict from the conjunctive combination. The latter is

really interesting, but in this work, we have chosen another

measure, which is highly correlated with the mass of con-

flict, while being a bit easier to tune. Due to limited space,

we do not detail the comparative theoretical and statistical

studies that have led to this choice, and we focus on the

description of the one that has been selected.

Let ω∗ be an unknown word from the test set, and ω1 the

class that has been ranked first by the classification process

(the output of which is the mass function m∩). We define

Flict, the measure of conflict, as:

Flict(ω∗) = 1− pl∩({ω1}) = bel∩({Ω \ ω1})
It corresponds to the sum of the mass of evidence which

does not support the decision which has been made. This

measure is really interesting, as it is easy to interpret, and

as it takes its value in [0, 1]. On the other hand, if one wants

to be really discriminative by rejecting a huge proportion of

the test set, this measure is not adapted, as potentially too

many test words may have a null measure of conflict.

B. The measure of conviction

For a dedicated word, the second measure aims at quan-

tifying the conviction of the decision which has been made,

i.e. whether at the end of the classification process, a class

is clearly more likely than the other, or, on the contrary,

whether the choice relies on a very weak preference of a

class with respect to the others. Of course, we expect that a

low measure of conviction corresponds to a situation where

there is not enough evidence to make a clear-cut choice

(and thus, rejection is an interesting option), and a high

measure of conviction indicates that there is no room for

hesitation, nor rejection. As with the measure of conflict,

we do not detail the comparative study of several measures

of conviction, and we focus on the chosen one. We define

the measure of conviction as:

V iction(ω∗) =
∑
A⊆Ω

p̂l∩(A)− b̂el∩(A)

i.e. the sum over P(Ω) of the measure of imprecision of

the pignistic discounting m̂∩ of m∩. Contrarily to Flict,
V iction can be tuned according to the whole rejection

spectrum, but its tuning is more difficult, as the values

of its bounds depend on |Ω|. However, the main interest
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of V iction is that it can be defined in a completely
probabilistic context, without an ensemble classification
based on DST. As a matter of fact, m∩ corresponds to a

probability distribution (such as the one provided by any

probabilistic classifier). As a consequence, in a probabilistic

case, the classifier provides a probability distribution p, and

then, a consonant mass mp = p̂ is derived by applying

the inverse pignistic transform to p. If plp and belp are the

plausibility and belief functions of mp, we have:

V iction(ω∗) =
∑
A⊆Ω

plp(A)− belp(A)

and this measure does not require any DST-based classifier

nor any DST-based ensemble classification to be used.

C. Rejection strategies

Now, we use Flict and V iction to define three rejection

strategies: The first and second strategies are based on each

of the measures, while the third is based on a combination of

the two measures. The first two rejection strategies are built

in a similar way: The considered measure is compared to a

threshold, which has been determined on a validation set, in

order to reach a particular Rejection Rate. Depending on the

sign of the difference between the measure and the threshold,

the test word is classified or rejected. Of course, our two

motivations for the rejection (too much conflict or too little

conviction) are supposed to be independent. In practice, as

the classifiers are not completely independent, and as the

scores provided by the classifiers are normalized (so that

they add up to one whatever the conflict and the conviction),

the conviction and conflict measures are rather correlated.

Hence, it makes sense to combine them, to stabilize and

average the rejection performances. To do so, we simply

reject a word if at least one of the two measures is beyond

the threshold corresponding to the chosen Rejection Rate.

As a reference method to evaluate our various strategies, we

have chosen the one from [10] which provides the best result.

It is sounded to choose this strategy, as it shares the same

philosophy as ours: it is based on the comparison of a simple

measure computed for each test word to a fixed threshold,

and it does not require an extra classification process. It is

based on the following measure:

Diff(ω∗) =
m∩(ω1)

m∩(ω1)−m∩(ω2)

The Diff measure varies within [0, 1]. Thus, a threshold

in [0, 1] is selected on the validation set according to the

expected Rejection Rate, and the words for which the Diff
measure is greater than the threshold are rejected.

IV. EXPERIMENTAL RESULTS

Experiments have been conducted on two publicly avail-

able datasets: IFN/ENIT benchmark dataset of Arabic words

and RIMES dataset for Latin words. The IFN/ENIT [16]

Figure 1. Comparison of the ROC curve of St1 (thick line) St2 (dotted)
and St3 (thin black line) for the RIMES (left) and IFN/ENIT (right) dataset.

contains a total of 32,492 handwritten words (Arabic script)

of 946 Tunisian town/village names written by 411 different

writers. Four different sets (a, b, c, d) are predefined in the

dataset for training and one set (e) for testing. The RIMES

dataset [17] is composed of isolated handwritten word

snippets extracted from handwritten letters (Latin script). In

our experiments, 36,000 snippets of words are used to train

the different HMM classifiers and 3,000 words are used in

the test. The dictionary is composed of 1,612 words.

The ensemble classification procedure described in Sec-

tion II-C has been applied to both of the test sets, fol-

lowing by the application of the four proposed rejection

strategies: The one based on Flict (St1), the one based

on V iction (St2), the one based on the combination of

Flict and V iction (St3), and the reference strategy defined

above (RefSt). For the experimental comparisons, we use the

Receiver Operating Characteristic (ROC) curve, which is a

graphical representation of the trade-off between the True

Rejection Rate (TRR) and the False Rejection Rate (FRR).

It appears in Figures 1 that St1, St2 and St3 roughly

behave similarly, whatever the test set. Hence, for the sake

of simplicity, we consider from now only St3, which benefits

from the advantages of both St1 and St2. The ROC curves, as

well as the Error Rate, the Recognition Rate and Reliability

with respect to the Rejection Rate are represented in Fig.

2. On the RIMES dataset, results are slightly better with

St3 than with RefSt. Indeed, the value of the Area Under

Curve (AUC)is 75.95% with StRef, whereas it is 79.01%

with St3. On the other hand, results on the IFN/ENIT dataset

are largely better with our rejection strategy than with the

reference one. In fact, the value of the AUC is 72.79%

with StRef, whereas it is 88.05% with St3. Moreover, we

observe from this figure that for low Rejection Rates, the

proposed rejection strategy produces interesting trade-offs

between error and reject, which is the last important point

in practical applications. Practically, the word Error Rates

can be reduced from 18.50% to 6.37% on IFN/ENIT dataset

and from 30.47% to 17.77% at the cost of the rejection 20%

of the input words.
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Figure 2. Comparison of the presented (dotted) and the reference (lined)
methods for the RIMES (above) and IFN/ENIT (below) datasets. On the
left, the ROC curve; on the right, the reliability, error and recognition rates.

V. CONCLUSION

We have presented a novel rejection strategy for reducing

the Error Rate and improving the Reliability of the off-

line handwritten word recognition system. Three different

rejection strategies were investigated based on Dempster-

shafer theory: The first one is based on a measure of the

conflict among the evidence that has led to the choice of

a particular class, while the second is based on a measure

which encodes the conviction of the evidence involved in the

classification process. Finally, the last strategy is based on a

combination of the two previous measures. The experimental

results have shown through two different publicly available

datasets (one with Latin script and the other with Arabic

script) that the proposed approach outperforms other state-

of-the-art rejection methods. In fact, the word Error Rates

can be reduced from 18.50% to 6.37% on IFN/ENIT dataset

and from 30.47% to 17.77% at the cost of rejecting 20%

of the input word images. Our future works will focus on

alternative treatment of the rejected samples.
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