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Abstract—Context-dependent HMMs are commonly used in
speech recognition. Parameter sharing needed for this model
can be realized by two methods: context clustering or tied-
mixture. In speech recognition, the former is reported to be
more precise. However, there is some difficulty in applying
context clustering to handwritten word recognition, since the
distribution of each character is typically a mixture of different
distributions, such as block-printed, cursive, etc. For this
reason, successful results reported so far are limited to the
tied-mixture approach. To deal with this problem, we propose
a novel parameter tying method “Partial Tied-Mixture”, where
the Gaussian Mixture Model (GMM) consists of a portion of all
Gaussians. Furthermore, we derive a method to concurrently
optimize context clustering and GMM. Experiments on the
CEDAR database show that the proposed method outperforms
tied-mixture both in terms of precision and computational cost.

Keywords-Handwritten word recognition; Context cluster-
ing; GMM; Context-dependent HMM; Partial Tied-Mixture;
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I. INTRODUCTION

Context-dependent HMMs are a commonly used tech-

nique in speech recognition. Tuning the parameters for

each context improves the recognition rate, since a speech

waveform is distorted, depending on the preceding and

succeeding phoneme, or the context. The same kind of

distortion occurs in handwriting. However, to the best of

our knowledge, there have been only two attempts at on-

line handwriting recognition based on context-dependent

HMMs [1], [2], and five at offline [3], [4], [5], [6], [7].

A context-dependent model has a risk of overfitting, due

to an increase in the number of parameters. Tying parameter

values among models is necessary to prevent this. There are

two methods for parameter tying: context clustering and tied-

mixture. Context clustering approach subdivides the context

into clusters and shares the parameters among the contexts in

the same cluster. Contexts are typically clustered by the state

position of each phoneme model, and the states are shared

among the contexts in the same cluster. This method usually

provides higher precision compared with the tied-mixtures.

On the other hand, tied-mixture approach shares the

Gaussian of the GMM among states, only varying the mixing

coefficients. Natarajan et al. reports that sharing Gaussians

only among the same character and the same state position

leads to a higher recognition rate [3]. This method is usually

employed in order to improve the efficiency, since the

degradation of the precision is relatively small for a small

number of mixture components.

There are two types of context clustering: those which

utilize a prior knowledge on the recognition target, and those

which do not. Tree-Based Clustering, often employed in

speech recognition, is of the former type. This type needs

a specialized knowledge on the recognition target, which

prevents it from being applied to various targets, such as

different languages (ex. Arabic, Korean), different sequential

data type (ex. handwriting, speech, sign language), and

so on. Furthermore, sometimes it cannot be used when

feature or model configuration are changed. Therefore, a

context clustering method which does not need specialized

knowledge has been eagerly awaited.

Since context clustering provides a high precision as

noted above, there is an expectation that this technique can

be employed in offline handwriting recognition. However,

successful context clustering without using prior knowl-

edge on the recognition target has not been reported to

date. To the best of our knowledge, there have been only

2 works dealing with context-dependent models without

prior knowledge [3], [4]. Both of them adopts tied-mixture

approach. There have been 3 published works discussing

context clustering [5], [6], [7], but all of them use prior

knowledge on the recognition target. Fink et al. reports that

context clustering without using prior knowledge lowers the

recognition rate. The reason for this is thought to be the

fact that the variation of the letter form of a single category

caused by the writing style, like block print or script, is far

greater than the fluctuation due to the context.

In this paper, a novel method for parameter tying – Partial

Tied-Mixture (PTM) – is proposed. PTM is the generaliza-

tion of the conventional context clustering, and it is effective

even in the cases with greater letter shape variation within a

single category. We show that the optimization of PTM’s

parameters can be seen as a concurrent optimization of

context clustering and GMM. The problems of conventional

methods are pointed out in section II. PTM is presented, and

the parameter updating formula is derived out in section III.

The effectiveness of PTM is demonstrated in section IV.
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Figure 1. An example of the distribution of phoneme r for each context
of preceding phonemes

Figure 2. An example of the distribution of character r for each context
of preceding characters

II. PROBLEMS OF CONVENTIONAL METHODS

The conventional model learning flow using context clus-

tering is as follows:

Step 1: Divide the context by using some clustering tech-

nique for each state position of each phoneme.

Step 2: Let all the context in the same cluster share the

states.

Step 3: Estimate GMM parameters for the shared state.

Fig.1(a) is an example of the distribution of the feature

vector corresponding to a particular state position of a

particular phoneme (“r”) for each preceding phoneme (a-

, i-, u-, e-, o-). Correspondence between state and feature

vector can be found by using Baum-Welch algorithm or

Viterbi algorithm. Fig.1(b) is the result of step1, showing

two clusters (i-r,e-r) and (a-r,u-r,o-r). Fig.1(c) is the result

of step3, in which each cluster is estimated by 2 Gaussians.

The conventional learning step works well for such cases

with comparatively large variation by context.

In the case of handwritten character recognition, however,

each character has distinctively different letter shapes like

block print or cursive scripts, which leads to larger variation

than that which is caused by the context. Fig.2(a) is an ex-

ample of the distribution of handwritten “r” for each context

of the preceding character (a-, b-, c-, d-, e-). The distribution

is distinctly divided into two parts as illustrated, since the

shapes of block print and cursive script differ largely from

each other. In these cases, the effect of the context results

in a relatively small variation in each cluster. Furthermore,

cursive script and block print may have different mode of

context variation. Clustering in Step 1 cannot be carried out

appropriately for data like this, which spoils the accuracy

improvement.

III. PARTIAL TIED-MIXTURE AND ITS OPTIMIZATION

A. Partial Tied-Mixture

Now we propose Partial Tied-Mixture (PTM) model. The

method selects M Gaussians from G Gaussians (1≤M≤G)

to built a GMM.

First examine the relationship between PTM and the con-

ventional one. Fig.1(c) can be seen as special case of G=4,

M=2 in PTM. The original Gaussians are four: A, B, C, and

D. GMM of “a-r” consists of C and D. Similarly, GMMs of

“i-r”, “u-r”, “e-r”, and “o-r” consist of (A,B), (C,D), (A,B),

and (C,D), respectively. That is, each GMM consists of two

Gaussians selected from (A,B,C,D). However, arbitrary pair

of Gaussians cannot be selected by the conventional method.

For example, in Fig.1(c) the combinations (A,B) and (C,D)

only exist. In this case, (A,C) cannot be used. Therefore,

PTM can be seen as the generalization of the conventional

one.

Next, let us see that PTM can deal with those cases as

shown in Fig.2. It seems necessary in the case to partition

the context in different way for cursive script and block print

respectively, since the context varies in different ways in the

two writing style. In Fig.2(b), cursive script is partitioned

into three clusters (a-r,c-r), (b-r,d-r), and (e-r), while block

print remains a single cluster. Each Gaussian E, F, G, and

H is the estimation result of of each cluster, respectively.

“a-r” is estimated by GMM consisting of F and H. “b-r”,

“c-r”, “d-r”, and “e-r” are estimated by GMM consisting

of (E,H), (F,H), (E,H), and (G,H), respectively. Therefore,

Fig.2(b) corresponds to the case of G=4, M=2 in PTM.

As shown above, Partial Tied-Mixture can deal with those

cases with mixed writing style as Fig.2(b), as well as easier

cases. For this improvement, conventional process does not

work, in which context clustering and GMM estimation

are carried out sequentially and separately. Based on the

above consideration, we propose a method to carry out

context clustering and GMM estimation concurrently. EM

algorithm is employed for optimization. First, formulation

for the case of M=1 is given in III-B. In this case, context

is partitioned into mutually exclusive clusters, which can be

seen as context clustering. Next, the method is generalized

for the case of M≥2 in III-C. It can be seen as concurrent

optimization of context clustering and GMM estimation.

Here, let us check the relation between PTM and tied-

mixture. When M=G, the framework of PTM is the same

as tied-mixture. In this case, estimation is difficult since

contexts are overlapping like E, F, and G in Fig.2(b). The

reason is the approximation of contexts by Gaussians do

not likely to reflect the difference of the contexts, by using

the whole set of the Gaussians for every contexts. On the

other hand, the proposed method can deal with the matter

by choosing the M<G appropriate subset of Gaussians from

the whole set. Here, higher recognition rate can be expected

compared to tied-mixture.

B. Context Clustering by EM algorithm

Clustering of raw data can be accomplished by allocating

each data to one of the Gaussian of the GMM estimated by
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using EM algorithm. Estimating GMM is equivalent to de-

termining the parameters am, μm, Σm so that the likelihood

of all the data X be maximized, assuming a model in which

the data are emitted by the m-th Gaussian N (x;μm, Σm),
chosen with a priori probability am, where μm is the mean,

Σm is the covariance matrix. Fig.3(a) is the conceptual

diagram of the process.

Now let us adopt this approach to the clustering of

context. Let xli be a data which belongs to the context

l (l = 1, ..., L), where i = 1, ..., Nl, Nl is the data size of

context l. In the model of Fig.3(a), this time, the Gaussian m
is chosen with a priori probability am for each context, not

for each data, and all the data xl1, ...,xlNl
belonging to the

context l are emitted from the same Gaussian. Clustering

of context can be realized by this model. Parameters in

the model are determined so that the likelihood p(X|Θ) is

maximized, where X denotes all the data in all the context

and Θ denotes all the parameters. This maximization can

be solved by EM algorithm. The update formula can be

derived in a similar way as data-wise clustering by GMM,

as described below.

Let latent variable yl be the index number of the Gaussian

which the context l has chosen. Then, yl ∈ {1, ..., G}. Let

Y = (y1, ..., yL) be all the latent variables. EM algorithm

increases the likelihood p(X|Θ) by replacing Θ repeatedly

by Θ̂ which maximizes the Q-function defined below.

Q =
∑
Y

p(Y|X, Θ) log p(X,Y|Θ̂) (1)

By expanding Eq.(1), you get

Q =
L∑

l=1

G∑
m=1

Ylmlogâm+
L∑

l=1

G∑
m=1

Nl∑
i=1

YlmlogN(xli;μ̂m,Σ̂m) (2)

where âm, μ̂m, Σ̂m are the parameters after update. Ylm is

a posteriori probability P (yl = m|X, Θ) that the context l
chooses Gaussian m, which is given by

Ylm =
am

∏Nl

i=1 N (xli;μm, Σm)∑G
m′=1 am′

∏Nl

i=1 N (xli; μm′ ,Σm′)
. (3)

Since the constraint is
∑G

m=1 âm = 1, by using La-

grange’s multiplier, the problem is to maximize J = Q −
λ(

∑G
m=1 âm − 1), or to solve ∂J

∂Θ̂
= 0. As a result,

âm, μ̂m, Σ̂m are given by

âm =
∑L

l=1 Ylm

L
, μ̂m =

∑L
l=1

∑Nl

i=1 Ylmxli∑L
l=1

∑Nl

i=1 Ylm

(4)

Σ̂m =
∑L

l=1

∑Nl

i=1 Ylm(xli − μ̂m)(xli − μ̂m)T∑L
l=1

∑Nl

i=1 Ylm

. (5)

The denominator of μ̂m, Σ̂m can also be expressed as∑
l NlYlm. Here, Eq.(3) is the E-step, Eq.(4)(5) is the M-

step. Applying these two steps alternatively will increase the

likelihood.

Figure 3. (a) A conceptual diagram of GMM (b) A conceptual diagram
of PTM

Context clustering can be accomplished by allocating the

context l to the Gaussian which maximizes the a posteriori

probability Ylm after the learning process.

C. Concurrent Optimization of Context Clustering & GMM

In this section, the methodology in III-B will be enhanced

to treat the case of M≥2. The number of combination

to select M Gaussians out of G to build a GMM is

GCM . Assume that each context l selects k-th GMM with

a priori probability ak. Also assume that each data xli

of the context l selects a Gaussian of the k-th GMM

independently. Fig.3(b) shows an example of G=4, M=2.

In this case, 4C2=6 GMMs are built. All the parameters Θ
which maximize the likelihood p(X|Θ) are estimated by EM

algorithm as described below.

Let K be the number of GMM, then K=GCM . Let Ck

be the set of index numbers of Gaussians which constitute

GMM k. For example, C6={3, 4} for “GMM 6” in Fig.3(b).

Let bkm be the mixing coefficient of Gaussian m in GMM k.

GMM k is given by
∑

m∈Ck
bkmN (x;μm, Σm). Here, we

introduce a latent variable zl, or the index number of the

GMM which the context l selects. zl∈{1, ..., K}. We also

introduce a latent variable vli, or the index number of the

Gaussian which data xli selects, then vli∈Czl
. Let the whole

latent variable be denoted by Z. In this case, Z includes

zl (∀l) and vli (∀l, i). For other variables, we follow the

naming convention in III-B.

By expanding Q-function, we get

Q =
∑
Z

p(Z|X, Θ) log p(X,Z|Θ̂) (6)

=
L∑

l=1

K∑
k=1

Zlk log âk+
L∑

l=1

K∑
k=1

Nl∑
i=1

∑
m∈Ck

ZlkVlikm log b̂km

+
L∑

l=1

K∑
k=1

Nl∑
i=1

∑
m∈Ck

ZlkVlikm logN (xli; μ̂m, Σ̂m), (7)

where âk, b̂km, μ̂m, Σ̂m are parameters after update. Zlk is

the a posteriori probability of the context l to select GMM k,

or P (zl = k|X, Θ), and Vlikm is the a posteriori probability

of the data xli to select Gaussian m on the condition that
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the context l selects GMM k, or P (vli = m|zl = k,X, Θ),
and calculated as follows:

Zlk =
ak

∏Nl

i=1

∑
m∈Ck

bkmN (xli; μm,Σm)∑K
k′=1

{
ak′

∏Nl

i=1

∑
m∈Ck′ bk′mN(xli; μm,Σm)

} (8)

Vlikm =
bkmN (xli; μm, Σm)∑

m′∈Ck
bkm′N (xli; μm′ ,Σm′)

. (9)

Since the constraints are
∑K

k=1 âk = 1 and∑
m∈Ck

b̂km = 1 (∀k), by using Lagrange’s multiplier, the

problem is to maximize

J = Q−λ0

(
K∑

k=1

âk − 1

)
−

K∑
k=1

λk

( ∑
m∈Ck

b̂km − 1

)
, (10)

or to solve ∂J

∂Θ̂
= 0. Therefore in a similar fashion as in

III-B, μ̂m, Σ̂m are solved in a form of a weighted mean and

a weighted covariance matrix as:

μ̂m =
∑L

l=1

∑Nl

i=1

∑K
k=1 ZlkVlikmxli∑L

l=1

∑Nl

i=1

∑K
k=1 ZlkVlikm

(11)

Σ̂m =
∑L

l=1

∑Nl

i=1

∑K
k=1ZlkVlikm(xli−μ̂m)(xli−μ̂m)T∑L

l=1

∑Nl

i=1

∑K
k=1 ZlkVlikm

.(12)

âk, b̂km are solved as:

âk =
∑L

l=1 Zlk

L
, b̂km =

∑L
l=1

∑Nl

i=1 ZlkVlikm∑L
l=1 NlZlk

(13)

Eq.(8)(9) corresponds to E-step and Eq.(11)-(13) corre-

sponds to M-step.

After learning phase has finished, for the output proba-

bility distribution of the context l, pl(x), although we may

just choose the GMM k which maximizes the a posteriori

probability Zlk, here we compute predictive distribution [8]

to refine estimation, since we know the a posteriori probabil-

ity Zlk of all the GMM. For mixing coefficient, bkm is not

appropriate since it is the value shared by all the contexts.

The value for each context l can be computed, like ordinary

GMM estimation, as:

wlkm =
1
Nl

Nl∑
i=1

Vlikm. (14)

As a result, pl(x) is given by:

pl(x) =
K∑

k=1

Zlk

∑
m∈Ck

wlkmN (x; μm, Σm). (15)

IV. EXPERIMENTS

We conducted experiments on handwritten word recog-

nition using American city name in CEDAR database [9].

We used 3,213 word images for training and 352 for

evaluation, excluding those images with underlined words,

geometrically mixed adjacent text lines, etc. from original

datasets 1. We used the slant adjustment technique by Ding et

al. [10]. We applied neither size nor skew normalization. We

used LGH feature [11]. Characters were handled with case-

sensitivity. We employed 10 state left-to-right model. The

maximum lexicon size was made to include 1,000 words,

by adding training data to evaluation data. The lexicon size

was varied from 10 to 1,000. We used dynamic lexicon

technique in which lexicon was so arranged to include the

correct one 2.

We built up three models for comparison:

CIM: Context-independent model. The number of mixture

components was varied from 1 to 12.

STM [3]: Context-dependent tied-mixture model in which

tying performed per the state position. Out of ten states,

five is dependent on the preceding character, and the rest is

dependent on the succeeding 3. CIM’s parameters are used

for STM’s initial values.

PTM: Proposed context-dependent Partial Tied-Mixture

model. The same context configuration as STM. The same

initial parameters as STM.

Fig.4 shows the error rate of CIM when lexicon size and

the number of Gaussians are varied. The minimum error by

lexicon size is marked by bold, also shown in the bottom

line indicated by “min”. Fig.5 shows the error rate, error

reduction rate (ERR), and p-value in STM. ERR is the

reduction rate of the error rate E compared to E′ in CIM,

and can be calculated as ERR = E′−E
E′ . “min” value was

used for E′, E. The p-values were computed for all the pairs

of G′ and G′′, where G′ and G′′ are the number of Gaussian

in STM and CIM, respectively. The maximum values for G′′

are shown in Fig.5 4. Fig.6 shows the error rate, ERR, and

p-value in PTM when M=2. Two values of ERR are shown,

compared to the case of CIM and STM. Likewise, two p-

values are shown, compared to CIM and STM. The p-values

less than 5% are written in bold style.

CIM>STM>PTM holds for every lexicon size when

“min” values are compared. The effect of a context-

dependent model can be seen in STM, but is more distinct in

PTM. ERR compared to CIM is 10.1% to 28.8% for PTM,

much higher than 3.0% to 6.0% for STM. ERR of PTM

1We used BD and BS datasets, which are the only randomly sampled
ones. The two datasets are divided into 3,670 for training and 377 for
evaluation by CEDAR.

2The real experiments were carried out for lexicon size 1,000 and the
recognition rate for other lexicon sizes were computed by the data. If the
rank of the true word is 1≤r≤1000 among 1,000 words in the lexicon,
the probability of the event that the rank of the true word becomes 1st is
1000−rCs−1

999Cs−1
when the lexicon size is reduced to s, and was averaged over

the evaluation data. This is equivalent to conducting all the s experiments.
We calculated the error rate in two places of decimals for those cases
with lexicon size up to 200, since the precision is virtually raised by the
experimental process.

3This configuration is independent from the specific knowledge about
the recognition object. This configuration is valid for arbitrary object.

4Wilcoxon signed-rank test was performed on the difference of true
word’s rank for lexicon size 1,000.
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Figure 4. Error rate of CIM

Figure 5. Error rate, ERR, p-value in STM

directly compared to STM is 6.7% to 24.2%, showing the

efficiency.

The minimum p-value of STM compared to CIM is 6.4%

when G′=7, which does not necessarily mean difference,

under 5% significance level. On the other hand, p-value of

PTM when G=10, is 0.4% and 1.1%, compared to CIM and

STM, respectively, meaning significantly lower error rate.

The error rate of PTM is lower than that of STM for every

lexicon size, when G and G′ are set to 7, which gives the

maximum performance for STM. PTM seems more precise

than, and as efficient as tied-mixture, since computational

efficiency depends on the number of Gaussians.

V. CONCLUSION

In this paper, a novel parameter tying method for a

context-dependent HMM called “Partial Tied-Mixture” has

been proposed. Conventional context clustering does not

seem effective for handwriting recognition, since there exist

distinctively different letter shapes in the same category.

We proposed a method in which M Gaussians are selected

from G Gaussians and are optimized by EM algorithm.

We first formulated a context clustering by means of the

EM algorithm, and generalized it to the above mentioned

optimization method. Experiments on handwritten word

recognition indicated up to 24.2% error reduction compared

to the tied-mixture method. We have also confirmed that the

error rate is lower than the conventional method, assuming

that the computation time is the same.

Future work includes shorter learning time. Learning time

increases exponentially with G and M . The optimal G

Figure 6. Error rate, ERR, p-value in PTM

and M increase and the learning becomes more and more

difficult, as the amount of learning data increases. It may be

solved by pruning those branches with small values.
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