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Abstract—This paper investigates the effects of confidence
transformation (CT) of the character classifier outputs in
handwritten Chinese text recognition. The classifier outputs
are transformed to confidence values in three confidence
types, namely, sigmoid, softmax and Dempster-Shafer theory
of evidence (D-S evidence). The confidence parameters are
optimized by minimizing the cross-entropy (CE) loss function
(both binary and multi-class) on a validation dataset, where
we add non-character samples to enhance the outlier rejection
capability in text recognition. Experimental results on the
CASIA-HWDB database show that confidence transformation
improves the handwritten text recognition performance signif-
icantly and adding non-characters for confidence parameter
estimation is beneficial. Among the confidence types, the D-S
evidence performs best.

Keywords-Handwritten text recognition; confidence transfor-
mation; cross-entropy; non-characters

I. INTRODUCTION

The recognition of unconstrained handwritten Chinese
texts is a great challenge due to the diversity of writing
styles, large character set, the character segmentation prob-
lem caused by variable character size, confusing within-
character and inter-character gaps, character touching and
overlapping, etc. A general approach to overcome the am-
biguity of character segmentation is to generate candidate
characters by over-segmentation and search for the opti-
mal path in the candidate segmentation-recognition lattice.
Candidate paths are usually evaluated by combining char-
acter classification scores, linguistic context and geometric
context [1], which can be seen as a combination of mul-
tiple classifiers. Confidence transformation (CT) converts
the classifier outputs to approximate the class posterior
probability, and has been shown to benefit the combination
of multiple classifiers [2], [3].

Some works of confidence transformation for character
recognition have been reported. Li et al. [4] used the
logistic regression model to directly convert the classifier
outputs into confidence values, which inherently considered
the multi-class problem as multiple one-versus-all binary
problems. Jiang et al. [5] got confidence values with the
multi-class softmax framework, with the parameter of soft-
max estimated by minimizing a squared error criterion on
a validation dataset [6]. These works have not considered
the influence of non-characters because they either tested
on isolated characters or assumed that the text strings have

been segmented into characters. Handwritten text (character
string) recognition involves classification of non-characters
and the non-character resistance (outlier rejection) capability
of the classifier is very important [7]. When the classifier
outputs are transformed to confidence values, the outlier
rejection capability should be taken into account. To our
best of knowledge, the outlier resistance of confidence
transformation has not been considered in the context of
character recognition.

In this paper, we evaluate the effects of confidence trans-
formation of character classifier in handwritten Chinese text
recognition. We consider some common confidence types,
namely, sigmoid, softmax and Dempster-Shafer theory of
evidence (D-S evidence) [3]. The confidence parameters
are estimated by minimizing the cross entropy (CE) loss
function on a validation dataset. We formulate the confi-
dence measures in multi-class as well as binary classifi-
cation frameworks incorporating an outlier class, and add
non-character (outlier) samples in the validation dataset to
enhance the outlier resistance of transformed confidence
measure. In our experiments of unconstrained handwritten
Chinese text recognition on the CASIA-HWDB database us-
ing two classifiers (modified quadratic discriminant function
(MQDF) [8] and nearest prototype classifier) and character-
level n-gram language model, the confidence transformation
of classifier outputs is shown to significantly influence the
text recognition performance. Adding non-character samples
in confidence parameter estimation is shown to benefit
the text recognition performance. While comparing the
confidence types, the D-S evidence performs best in our
experiments.

II. SYSTEM OVERVIEW

Our handwritten Chinese text recognition system frame-
work is based on our previous work [9], and the block
diagram is shown in Fig. 1. First, the input text line image
is over-segmented into a sequence of primitive segments
(Fig. 2a) using the connected component-based method [10].
Then, consecutive segments are combined to generate can-
didate character patterns, forming a segmentation candidate
lattice (Fig. 2b). After that, each candidate pattern is clas-
sified to assign several candidate character classes, forming
a character candidate lattice (Fig. 2c). Last, each character
sequence C paired with candidate pattern sequence X (the
pair is called a candidate segmentation-recognition path) is
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evaluated by combining the classification scores, linguistic
context and geometric context.

Figure 1: System diagram for handwritten Chinese text
recognition.

(a)

(b)

(c)

Figure 2: (a) Over-segmentation; (b) Segmentation candidate
lattice; (c) Character candidate lattice of a segmentation.

In this work, we ignore the geometric context because our
focus is the effect of confidence transformation. Specifically,
we evaluate the candidate segmentation-recognition path by

f(X,C) = logP (C) + λ ·
L∑

i=1

ki · logP (ci|xi). (1)

This formula is modified from logP (C|X), and p(ci|xi) =
p(xi|ci)p(ci)/p(xi) is calculated by confidence transforma-

tion of the character classifier. The probability P (C) is
given by the character-level tri-gram language model. The
combining weight λ is optimized by a method similar to
Minimum Phone Error (MPE) training [11]. To overcome the
bias of P (C|X) to small number of segmented characters,
we weight the classification score of each character pattern
with its number ki of constituent segments (similar to
the variable length HMM of [12]). The path of maximum
score over all combinations (X,C) gives the segmentation-
recognition result.

The summation nature of (1) guarantees that the optimal
path can be found by dynamic programming (DP) search.
The search proceeds in frame-synchronous fashion: at each
primitive segment st, examine all the candidate patterns
xi ending at st and the candidate class ci assigned to xi.
Denote the preceding candidate pattern of xi as xi−1 ending
at segment st−k and assigned classes ci−1. For each pair
(st, ci), an optimal partial path with maximum partial score
over (k, ci−1) is retained (the ci−2 for tri-gram calculation
has been known at preceding stage ending at (st−k, ci−1)).

III. CONFIDENCE TRANSFORMATION

For probabilistic fusion of classifier outputs, the trans-
formed confidence measures are desired to approximate the
class posterior probability P (ωj |x) (ωj refers to the j-th
class) [3], which can be obtained in several ways.

A. Confidence Types
The a posteriori probability can be directly obtained by

the Bayes formula given the a priori probability and the
conditional probability density of each class. Since the
probability density functions are not trivial to estimate, there
are many ways to approximate the a posteriori probability
from classifier outputs. Under the assumption of Gaussian
distribution with equal identity covariance matrix, the a
posteriori probability is proportional to the exponential [6]:

P (ωj |x) ∝ exp

[
−dj(x)

θ

]
, j = 1, 2, . . . ,M, (2)

where M is the total number of defined classes, dj(x) is the
dissimilarity score for class ωj output by the classifier, and
the parameter θ is optimized on training samples rather than
2σ2 (the variance from maximum-likelihood) to overcome
the deviation from distribution assumption. In this way, we
can get the a posteriori probability by the normalization of
(2), which results in the so-called softmax:

P sf (ωj |x) =
exp [−a · dj(x)]∑M
i=1 exp [−a · di(x)]

, j = 1, 2, . . . ,M, (3)

where the parameter a = 1
θ is used for more general

purposes. In Chinese character recognition, to reduce the
computation cost due to the large number of classes, we
usually consider a reduced number of top rank classes while
viewing the probabilities of the remaining classes as zero [6].

Viewing a multi-class problem as multiple one-versus-all
binary problems, the sigmoid function is often taken for
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binary posterior probability, as commonly used in logistic
regression and neural networks [13]:

P sg(ωj |x) =
exp [−a · dj(x) + b]

1 + exp [−a · dj(x) + b]
, j = 1, 2, . . . ,M. (4)

We can also get the multi-class probabilities by combining
the sigmoid confidence values according to the D-S theory
of evidence [3], [14]. First, we give 2M focal elements
(singletons and negations) ω1, ω1, . . . , ωM , ωM with ba-
sic probability assignments (BPAs) mj(ωj) = P sg(ωj |x),
mj(ωj) = 1 − P sg(ωj |x), then the combined evidence of
ωj is

P ds1(ωj |x) = A ·mj(ωj)
M∏

i=1,i ̸=j

mi(ωi), (5)

where

A−1 =

M∑
j=1

mj(ωj)

M∏
i=1,i ̸=j

mi(ωi) +

M∏
i=1

mi(ωi).

Substituting the BPAs from sigmoid confidence (4) in (5)
gives

P ds1(ωj |x) =
exp [−a · dj(x) + b]

1 +
∑M

i=1 exp [−a · di(x) + b]
,

j = 1, 2, . . . ,M. (6)

We call this probability as D-S evidence-type confidence.

B. Confidence for Outlier Class

In character string recognition as well as many other
pattern recognition problems, there maybe samples out of
the M defined classes, which can be viewed as belonging
to an “outlier class”. The one-versus-all binary probability
(sigmoid confidence) directly takes the outlier class as in
the negative class of each singlet class. By combining
binary probabilities, the D-S evidence confidence also covers
the outlier class because the summation of M posterior
probabilities in (6) is guaranteed to be smaller than or equal
to one. The softmax form of (3) does not consider the outlier
class, however. To modify, we assume the outlier class has a
constant dissimilarity score do(x) = b

a , which can be viewed
as a threshold for outlier rejection. Under the M +1 classes
framework, the softmax probabilities are modified to

P ds2(ωj |x) =
exp [−a · dj(x)]

exp(−b) +
∑M

i=1 exp [−a · di(x)]

=
exp [−a · dj(x) + b]

1 +
∑M

i=1 exp [−a · di(x) + b]
,

j = 1, 2, . . . ,M, (7)

which is equivalent to the form of D-S evidence (6), but
is derived from a different viewpoint. Also, the parameters
(a, b) for (6) (combined from sigmoid probabilities, and
we call DS1) and the extended softmax (7) (called DS2)
are estimated in different ways. For DS1, the parameters

of sigmoid confidence are estimated from one-versus-all
perspective; while for DS2, the parameters are estimated
from multi-class perspective.

In the D-S evidence framework, the outlier probability is

P ds(ωoutlier|x) =
1

1 +
∑M

i=1 exp [−a · di(x) + b]
, (8)

which is the complement probability to the M defined
classes.

C. Confidence Parameters Estimation
We optimize the confidence parameters by minimizing

the cross entropy (CE) loss function, which is commonly
used in logistic regression and neural network training [13].
Depending on the binary or multi-class nature, we use the
binary CE loss for the sigmoid confidence and the multi-
class CE for the softmax confidence. On a validation dataset
(preferably different from the dateset for training classifiers)
of N samples, the binary CE is

minCE = −
N∑

n=1

M∑
j=1

[
tnj logPj + (1− tnj ) log(1− Pj)

]
. (9)

Minimizing the multi-class CE is equivalent to maximizing
the conditional log-likelihood:

minCE = −
N∑

n=1

M∑
j=1

[
tnj logPj

]
. (10)

In the above, Pj = P (ωj |x), tnj = δ(cn, j) ∈ {0, 1}, where
cn(= 1, 2, . . . ,M) is the class label of the n-th sample xn.
In both cases, a term of weight decay is added to alleviate the
overfitting, and we minimize the empirical loss by stochastic
gradient descent to estimate the confidence parameters (a, b).

Outlier samples can be used for parameter estimation in
either binary (sigmoid) or multi-class (softmax) case. The
effect of outlier samples is not crucial for the binary CE
because for each singlet class, the samples of the other
classes play similar effect as outlier samples. For the multi-
class CE, however, outlier samples are crucial to guarantee
the outlier probability (8). In our experiments, we will
evaluate the effects using variable number of outlier samples.

IV. EXPERIMENTAL RESULTS

We evaluated the handwritten text recognition per-
formance with confidence transformation on a database
CASIA-HWDB produced by 1,020 writers, collected by the
Institute of Automation of Chinese Academy of Sciences
(CASIA). The database includes both isolated characters
and handwritten texts, and is divided into a training set
of 816 writers and a test set of 204 writers. The training
set contains 4,198,494 isolated character images of 7,356
classes (7,185 Chinese characters, 10 digits, 52 English
letters and 109 frequently used symbols) from isolated
characters and unconstrained texts. We tested on the uncon-
strained texts of 204 writers, including 1,015 documents,
which were segmented into 10,449 text lines and there
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are 268,629 characters (26,583 symbols, 6,879 digits, 747
letters, 233,329 Chinese characters and 1,091 characters out
of the 7,356 classes). The text lines were recognized one by
one with the cross-line linguistic dependency incorporated.

The character classifier used in text recognition ex-
tracts character features from gray-scale images us-
ing the normalization-cooperated gradient feature (NCGF)
method [15]. The obtained 512D feature vector is reduced
to 160D by Fisher linear discriminant analysis (FLDA)
and then classified using an MQDF classifier or a nearest
prototype classifier (NPC). The NPC was trained using the
algorithm of log-likelihood of margin (LOGM) [16]. We
used 4/5 samples of the training character set for training
classifiers, and the remaining 1/5 samples for confidence
parameter estimation. The non-character samples for confi-
dence parameter estimation were extracted from the uncon-
strained text lines in the training set, with some examples
shown in Fig. 3.

Figure 3: Examples of non-character samples.

In confidence transformation, we took only the 200 top-
rank classes in calculating the softmax and D-S evidence
for acceleration. After confidence transformation, only the
20 top-rank classes were used in the candidate character
lattice as done in our previous work [9]. This is to reduce
the lattice and speed up path search.

We evaluate the recognition performance using three
character-level metrics: recall (rcl), precision (prs) and F-
rate (frt), which are defined as

rcl =
#correct

#truth
× 100%

prs =
#correct

#result
× 100%

frt = 2× rcl · prs
rcl + prs

× 100% (11)

where #correct denotes the number of correctly recog-
nized characters calculated by dynamic programming (DP)
alignment of the output text string and the ground-truth
string, #truth denotes the number of characters in ground-
truth strings, and #result denotes the number of segmented
characters after text recognition. We also give the correct
(recall) rates for different types of characters: symbols (sb),
letters (lt), digits (dg), and Chinese characters (ch).

For combining the classifier outputs with the language
model in handwritten text recognition, we tested five options

of confidence transformation: using the output dissimilar-
ity measure directly as log-likelihood (without confidence
transformation), softmax without outlier class, D-S evidence
(combination of sigmoid confidence), and extended softmax
with outlier class, which are abbreviated to “w/o”, “sf”, “sg”,
“ds1”, and “ds2”, respectively.

By confidence parameter estimation without outlier sam-
ples, the recognition performance using MQDF classifier and
nearest prototype classifier (NPC) are shown in Table I and
Table II, respectively. The results show compared to recogni-
tion without confidence transformation, sigmoid confidence
and D-S evidence confidence (“ds1”) improve the recogni-
tion performance. For MQDF, the recall rate is improved
from 85.64% to 88.01% and 89.40%, respectively. And for
NPC, the recall rate is improved from 84.27% to 84.96%
and 85.33%. The benefit of confidence transformation is
attributed to the fact that the converted class probabilities and
the probabilistic language model are more compatible to be
combined. “ds1” performs even better than “sg” because it
gives multi-class probabilities. However, “sf” and “ds2” give
inferior performance, because “sf” does not consider outlier
probability while in the parameter estimation of “ds2”, no
outlier samples were used.

Table I: Recognition rates (%) of MQDF without outlier
samples in confidence parameter estimation.

rcl pcs frt sb dg lt ch
w/o 85.64 84.55 85.09 79.27 83.15 72.82 86.88
sg 88.01 86.02 87.01 77.85 82.99 75.64 89.77
sf 78.01 86.34 81.96 58.30 56.05 47.52 81.36

ds1 89.40 88.77 89.08 82.08 83.85 76.71 90.86
ds2 82.31 88.00 85.06 62.96 65.78 57.83 85.47

Table II: Recognition rates (%) of NPC without outlier
samples in confidence parameter estimation.

rcl pcs frt sb dg lt ch
w/o 84.27 84.68 84.48 79.44 77.95 61.85 85.48
sg 84.96 85.49 85.22 76.40 78.91 65.46 86.57
sf 75.10 82.65 78.69 65.82 55.65 38.69 77.20

ds1 85.33 86.87 86.09 78.99 76.35 64.52 86.79
ds2 76.62 83.39 79.86 67.09 59.27 41.23 78.68

In the confidence parameter estimation of “sg”, “ds1” and
“ds2”, non-character samples can be used to improve the
outlier resistance. The recognition performance (recall rate)
of MQDF and NPC with variable number of non-character
samples in confidence parameter estimation shown in Fig. 4,
and Table III and Table IV show the performance when using
350,000 non-character samples. The results show that outlier
samples are much influential to the performance of “ds2”.
When using a large number of outlier samples, “ds2” can
even yield higher recall rate than “sg” and close to “ds1”
(this is the case for MQDF classifier). On the other hand,
the performance of “sg” and “ds1” is almost not influenced
by outlier samples in parameter estimation, this is because
they are inherently resistant to outliers.

Finally, the performance (recall rate) of text recognition
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(a) MQDF (b) NPC

Figure 4: Recall rate with variable number of outlier samples
in confidence parameter estimation.

Table III: Recognition rates (%) of MQDF with outlier
samples in confidence parameter estimation.

rcl pcs frt sb dg lt ch
sg 87.82 86.01 86.90 78.38 83.25 74.97 89.48
ds1 89.28 88.66 88.97 82.15 83.98 76.57 90.71
ds2 88.88 90.27 89.57 76.38 79.82 73.49 91.03

Table IV: Recognition rates (%) of NPC with outlier samples
in confidence parameter estimation.

rcl pcs frt sb dg lt ch
sg 85.09 85.58 85.34 76.90 79.01 65.60 86.67
ds1 85.41 86.90 86.15 79.25 76.64 64.52 86.84
ds2 82.31 86.12 84.17 73.37 69.46 54.75 84.18

without using language model in path evaluation is shown
in Table V, where “mqdf-o” and “npc-o” denote that out-
lier samples were used in confidence parameter estimation
for MQDF and NPC, respectively. It is again shown that
confidence transformation mostly improves the recognition
performance.

V. CONCLUSION

We evaluated the effects of classifier confidence trans-
formation in handwritten Chinese text recognition system
using different confidence types and parameter estimation
methods. The sigmoid and D-S evidence confidence, due
to their coverage of outlier probability, give improved text
recognition performance even when estimating without out-
lier samples. The softmax confidence is inferior because it
does not consider the outlier class, while the performance
of the extended softmax with outlier class largely relies on
outlier samples in confidence parameter estimation. Based
on confidence transformation, our future work will integrate
more contextual information to further improve the hand-
written text recognition performance.

Table V: Recall rate (%) of recognition without language
model.

w/o sg sf ds1 ds2
mqdf 63.02 65.75 66.31 66.90 69.95

mqdf-o — 65.22 — 66.09 72.04
npc 71.12 75.17 69.39 75.33 70.72

npc-o — 75.16 — 75.30 74.27
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