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Université Pierre et Marie Curie
LIP6

Paris, France

Trinh Minh Tri Do

IDIAP
Marigny, Switzerland

Thierry Artières
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Abstract—We describe an hybrid model that combines deep
neural networks (DNN) for nonlinear feature extraction and
hidden conditional random fields (HCRF), i.e. conditional
random fields with hidden states. The model is globally trained
though joint optimization of HCRF and DNN parameters.
To deal with this highly non convex optimization criterion,
we propose a multi-step training which aims at providing a
good initialization before the final joint optimization of all
parameters. We investigate then the discriminative power of
these models with respect to the architecture of the DNN, and
compare our models to HMM and HCRF based algorithms on
the IAM database.
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I. INTRODUCTION

Hidden Markov Models (HMM) have been commonly

used to deal with sequential data classification and labeling.

HMM are generative models : they define a joint probability

distribution on the sequence of observations and the hidden

states and are traditionally trained through likelihood maxi-

mization which is a non-discriminant criterion. Some works

tried to overcome this limitation by learning discriminatively

HMM systems through the optimization of discriminant cri-

terion like minimum error classification [1], perceptron [2],

maximum mutual information [3] or more recently large

margin [4], [5].

Alternatively, an other way to reach higher discriminative

power (than HMMs), and a more straightforward one, is

to define a model of the posterior conditional probability

p(y|x) where y = (y1, y2, ..., yT ) is the sequence of labels

and x = (x1, x2, ..., xT ) is the multi-dimensional observable

sequence. We focus here on such models : Conditional

Random Fields (CRF) [6] and Hidden-CRF (HCRF), a

variant which makes use of hidden states to account for

the underlying structure of the data (alike HMMs). These

models have been used for various signal labeling tasks like

speech [7], handwriting [8] or gesture [9], [10] recognition.

First works have focused on linear CRFs exploiting raw

features through linear energy function (see section II-A),

they have been applied successfully to textual and biological

sequences [6], [11], [12]. Yet, these models frequently reach

lower accuracies than those using non-linear transformations

like kernels [13]. Though [14] showed the feasibility of using

a kernelized version of CRF, this extension is not tractable

in practice. Some authors chose to bypass this difficulty by

using nonlinear transformations of features. For instance a

popular strategy has been to use a polynomial extension (of

degree 2) of raw features, which allows defining a class of

models that include HMMs as a special case [7],[15].

Besides, recent works on deep neural networks (DNNs)

training have shown that these models may be trained effi-

ciently on complex data. Indeed, Hinton [16] proposed a new

learning algorithm for DNNs that gave a new breath to this

domain. It consists in a greedy layer-wise unsupervised pre-

training step, where hidden layers are successively learned

to extract relevant features from the previous one.

Most of previous works on discriminative tasks using

deep networks focused on fixed-sized classification prob-

lems (such as [17] or [18]). NNs have already been used

for structured prediction tasks. For example, the generic

graph transformer networks [19] use convolutional networks

for check reading. Collobert [20] proposed a multi-tasks

framework for natural language processing tasks where a

lookup table learns a representation of data before using a

convolutional network.

We proposed in [21] a combination of CRF and of

DNNs that aimed at combining the pros of the deeps

networks as nonlinear feature extractor and a discriminant

model for sequences in one unique framework that could

be optimized jointly. We build upon this work and propose

the combination of DNNs and of Hidden CRFs, allowing a

class model to use hidden states instead of using one state

per class. Since the training criterion is highly non convex,

we propose a three step learning that allows progressively

reaching high accuracy solutions. We compare our models to

HMM-based algorithms and to more classical HCRF based

systems using the polynomial expansion as in [7]. Recently

some authors explored too the combination of NNs and

CRFs for signal labeling tasks ([22], [23], [24]). Our work

differs from them in several points. First, unlike [22], we

optimize the DNN and the discriminative model jointly.

Unlike [23], we use models with more than one hidden
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layer, and pre-trained them. Second, we exploit hidden states

which significantly increase accuracy on real-valued and

noisy data (e.g. speech or handwriting recognition) as we

will show. Unlike [24] who report results on small datasets

only, we report experimental results on a real sized problem.

II. BACKGROUND

A. Conditional Random Fields

CRFs are a framework for building probabilistic graphical

models where independence assumptions between variables

are encoded in a Makovian network. While they can be

designed with various graph architectures, in the following

we restrict ourselves to “chain-structured CRF” (see 1) for

dealing with sequence data. The posterior probability of a

CRF over a set of Markov network of variables may be

defined as the product of functions defined on cliques of the

network. In ”chain-structured CRF”, we can distinguish two

kind of cliques at each time t:

• a clique connecting the observation xt to its correspond-

ing label yt
• a clique connecting tow successive labels, yt−1 and yt

Figure 1. Graphical representation of a CRF on a T -length sequence

Formally, we define two energy equations to model such

local and transition relationships:

• Eloc(x, t, yt,W) = 〈wyt
xt〉

• Etra(x, t, yt−1, yt,Λ) = λyt−1,yt

where W = {wy|y ∈L} and Λ = {λy1,y2
|(y1, y2) ∈ L2}

stand for the set of local-state and of state-state parameters

to be learned (with L denoting the set of possible labels).

A CRF defines the following conditional probability:

p(y|x,W,Λ) =
e
∑

t
Eloc(x,t,yt,W)+

∑
t>1

Etra(x,t,yt−1,yt,Λ)

Z(X)

where Z(x) is a normalization term : the sum over all

possible label sequences of the numerator (this makes∑
y p(y|x,W,Λ) = 1). Z(x) can be efficiently computed

via dynamic programming.

B. Hidden Conditional Random Fields

When applying CRF to signals such as speech and hand-

writing a natural idea is to make use of hidden states to

account for the underlying structure of the data, alike in

HMMs. Hence, to capture the different successive stages in

the signal corresponding to a particular class (e.g. character,

digit, phoneme, gestures, ...), one can affect a disjoint set

of hidden states to each label and allow transitions between

those states as proposed in [10].

One can furthermore constraint such a model to allow only

few transitions between the hidden states. As is classically

done in HMMs for speech and handwriting we consider

transitions constraints that lead to a “Left-Right” model.

A HCRF defines the following conditional probability :

p(y|x,W,Λ) =
∑

h∈s(y)
p(h|x,W,Λ) (1)

where h represents a sequence of hidden states (i.e. a seg-
mentation) and s(y) all possible segmentation corresponding

to a label sequence y.

Figure 2. Graphical representation of a HCRF

Unfortunately, introducing hidden states in a CRF makes

the optimization (maximizing conditional likelihood) a non-

convex problem. A good initialization is then essential to

avoid poor learning. Training is usually performed with

gradient based algorithms such as SGD or LBFGS.

C. Deep Neural Networks

Deep neural networks have generated renewed interest in

recent years as a consequence of the proposition in parallel

of a few efficient learning schemes for deep architectures.

For instance, Hinton proposed an algorithm for learning deep

architectures by pre-training each layer one by one from the

bottom one (raw data) to the top one in an unsupervised

fashion [16]. The main objective of this pre-training step is

to provide a “high-level” data representation as a byproduct

of a good (unsupervised) modeling of x. Such a greedy

algorithm is shared by a few approaches and relies on a

building block for learning each of the hidden layer. Two

such building blocks are used, either Restricted Boltzmann

Machines (RBM) or Auto-Encoder networks. We focus here

on RBM which we used on our experiments. A RBM

is an energy-based model that defines a joint-distribution

between a “visible” layer v corresponding to input data and

a “hidden” layer (named c for “code”). In a RBM, one as-

sumes that all units of a layer are conditionally independent.

This assumption significantly simplifies sampling as required

during training. A RBM defines a probability distribution

over visible and hidden units through the definition of an

energy function as:

p(v, c) = eenergy(v,c)

Z

where Z is a normalization term. A popular choice for the

energy function (for binary visible units) is the following:

energy(v, c) = −v�ṽ − c�Mv − c�c̃
where ṽ (resp. c̃) is a bias on the visible (resp. hidden) units,

and M stands for the weights between visible and hidden
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units. The normalization term (called “partition function”)

is unfortunately expensive to compute (may be intractable

on real problems) but the gradient of the maximum likeli-

hood objective can be approximated efficiently with the so-

called contrastive divergence algorithm [25], making training

tractable. Contrastive divergence relies on Gibbs sampling

using an interesting feature of RBM: the partition function

term is not required to sample c from v and vice versa.

III. MIXING DNNS AND HCRFS

A. Model
A NeuroHCRF is the combination of a deep neural

network and a HCRF. Let us denote:

• Θ all the parameters of the DNN

(i.e. for of each neuron, its bias and the weight of all

incoming synaptic connections)

• φ(xt,Θ) the output of the network computed with xt

as input.

Figure 3. Graphical representation of a NeuroHCRF

A NeuroHCRF extends a NeuroCRF in [21] and defines a

conditional probability as:

p(y|x,W,Λ,Θ) =
∑

h∈s(y)
p(h|φ(x,Θ),W,Λ) (2)

where the conditional probability is computed by summing
over all hidden state segmentation matching the label se-

quence y.

B. Training
Training aims at learning all parameters Θ, W and Λ

to jointly optimize the conditional likelihood criterion. This

optimization is difficult since the training criterion is highly

non convex. First training DNN weights is a highly non

convex problem in itself (this is the reason why DNNs have

not been much used for a long time till recent works such

as [16]). Second, although learning a linear CRF leads to a

convex optimization problem, introducing hidden variables

makes the criterion becoming non-convex. Hence training

jointly all the parameters of a NeuroHCRF requires a good

initialization. To achieve this we investigated a three steps

learning scheme that we discuss now.
1) Pre-training the DNN: We first pre-trained a neural

network on each frame of the data in an unsupervised way

just as is done in [16]. We mainly used deep belief nets,

which building block is a RBM, since Stacked Auto En-

coders did not allow reaching as good results in preliminary

experiments. In the following we will use Θ0 to denote this

initial set of parameters of the DNN.

2) Initializing the HCRF: Once the DNN is pre-trained,

it may be used as a nonlinear feature extractor. We proceed

by computing the activation of the last layer of the DNN

for each frame of training data. We then get a transformed

training set (where all frames have the dimension of the

last layer of the DNN). We use it to train the HCRF

though the maximization of the conditional likelihood of

the training data. This is done using an own optimization

procedure based on bundle method (see [26]). Furthermore,

to reach an interesting solution, this training is performed in

two sub-steps. First we fix the hidden state sequence for a

few iterations (according to linear alignment), then freeing

the hidden state sequence. Overall this initialization of the

HCRF consists in a learning of the NeuroHCRF model,

where the weights of the DNN (i.e. Θ) remain fixed to the

value found in the pre-training step of the DNN, Θ0.

3) Fine tuning: The last step of the training algorithm is

a joint optimization of all the parameters, starting with an

initial solution given by above pre-training steps. The last

training step consists in minimizing the minus conditional

likelihood and an additional quadratic regularization term Ω
(around the initial solution for the DNN’s weights) in order

to avoid over-fitting:

Ω(W,Λ,Θ) =
1

2

[‖Θ−Θ0‖2 + ‖W‖2 + ‖Λ‖2]

The gradient of this criterion may be easily back-propagated

to compute the gradient of the criterion with respect to

HCRF parameters and to the whole DNN parameters. As

a final step we perform a rescaling procedure between

transitions scores local scores in order to achieve a better

accuracy on the development dataset. Such a procedure

is classically used in speech recognition to tune HMM

parameters to balance insertion or deletion errors (see IV).

C. Inference

Inference in a NeuroHCRF consists in finding the labeling

ŷ which best fits the data sequence x.

ŷ = argmax
y

p(y|x,W,Λ,Θ)

ŷ = argmax
y

∑
h∈s(y)

e
∑

t
Eloc(x,t,ht)+

∑
t>1

Etra(x,t,ht−1,ht)

To do this, we first transform the input sequence, frame

by frame, using the DNN . Then we perform a classical

dynamic programming procedure to get ŷ.

IV. EXPERIMENTS

We performed off-line cursive handwritten word recogni-

tion experiments on the IAM database [27] preprocessed by

computing nine geometrical features on a sliding window as

described in [28] who kindly provided us their preprocessed

version of the database. We enriched the input of our model

by adding contextual information consisting in the two

previous and next frames. The size of the input layer of the
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Figure 4. Accuracies of NeuroCRF and NeuroHCRF for models using one to three layers, whose size ranges from 20 to 500 hidden units.

DNN was then 45 units corresponding to xt, xt−1, xt−2,

xt+1, xt+2. We used only medium sized training dataset

of 10K words (about 46K characters) to explore various

architectures from 20 to 500 units per hidden layer, and

from one to three hidden layers. Each character model had

five internal hidden states organized in a “Left-Right” way.

We investigated the performance of NeuroHCRF and of

NeuroCRF (as proposed in [21]), i.e. single state Neuro-

HCRF. We compared character error-rates which are com-

puted from the computation of the edit distance between the

predicted word and the true word. The edit distance produces

four values : the number of ”hits” H , of “deletion” D, of

”insertion” I , and of ”substitution” S.

Reported results consist in character recognition accuracy

computed on a 10K words test dataset as follow.

accuracy =
H − I

H +D + S

We report in Figure 4 comparative results of NeuroCRFs

and of NeuroHCRFs with various architectures. In both

cases, one can see that the performance can be improved by

using larger hidden layers and by adding hidden layers. Also

one can see that increasing the hidden layer size and number

jointly may lead to increased performance although this

seems more true for NeuroCRF than for NeuroHCRF whose

performance reaches an upper bound. Finally one see from

the two figures that NeuroHCRF consistently outperform

Model 20 50 100 200 500

NeuroCRF
1 layer 49.69 56.61 58.74 59.05 61.95
2 layers 55.11 59.97 61.53 62.41 63.81
3 layers 55.71 61.56 62.34 63.18 64.68

NeuroHCRF
1 layer 54.88 61.33 65.38 73.81 74.42
2 layers 56.98 64.93 68.8 74.07 74.72
3 layers 59.41 65.11 69.53 74.43 74.85

Table I
ACCURACIES OF NEUROCRF AND NEUROHCRF FOR MODELS

FROM 20 TO 500 HIDDEN UNITS IN ONE TO THREE LAYERS.

corresponding NeuroCRF with the same DNN architecture

and that the best NeuroHCRF architecture allows reaching

a very interesting performance of about 75% accuracy.

Models Specifications Accuracy

HMM
8 states 51.2
14 states 59.6

MaxMargin HMM
8 states 70.7
14 states 70.3

CRF
raw data 27.1

second order data 54.1

NeuroCRF
2 layers of 50 units 60.0 (36.6)

2 layers of 500 units 63.8 (54.6)

HCRF
5 states - raw data 65.1

5 states - second order data 70.0

NeuroHCRF
5 states - 2 layers of 50 units 64.9 (56.7)
5 states - 2 layers of 500 units 74.7 (67.3)

Table II
ACCURACIES OF SOME MODELS. THE PARENTHESIZED ACCURACIES

CORRESPONDS TO THOSE OBSERVED BEFORE FINE-TUNING.

Table I report comparative results of NeuroCRF and

NeuroHCRF architectures with various models on the same

test dataset. We report some baseline results gained with

HMM systems, either generatively trained (HMM rows),

or discriminatively trained (MaxMargin rows) with a large

margin criterion (i.e. all HMM results come from [21] and

have been gained on a more than 3-times bigger training

database but with the same test set). In addition we report

results of linear CRF and HCRF (with 5 hidden states)

working on raw features (raw data rows) and on polynomial

(degree 2) expansion of raw features (second order data
rows) as proposed in [7].

We can see in these additional results that despite their

discriminative learning, CRF (working with raw or second
order data) do not reach the accuracy of HMMs and are far

below those from HCRFs and HMMs learned with a large

margin criterion.
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This fact show how fundamental is the hidden state mod-

eling scheme, even if it leads to more complex optimization

schemes (loosing convexity). Comparative performance of

the models presented here show the benefits provided by

the DNN for “high-level” feature extraction, even when

comparing with HCRF working on second order polynomial

expansion of raw features.

V. CONCLUSION

We investigated an hybrid model blending HCRF and

deep neural networks which combines the benefits of both

approaches : the ability of deep neural network at extracting

high-level features, and the discriminative ability of CRF

powered by hidden states at labeling complex sequences.

We reported experimental results on the IAM dataset

showing the potential of those deep architectures with re-

spect to state of the art approaches.
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