
Iterative Analysis of Pages in Document Collections for Efficient User Interaction

Joseph CHAZALON, Bertrand COÜASNON
INSA Rennes – UEB

UMR IRISA
Rennes, France

{joseph.chazalon,bertrand.couasnon}@irisa.fr

Aurélie LEMAITRE
Université de Rennes 2 – UEB

UMR IRISA
Rennes, France

aurelie.lemaitre@irisa.fr

Abstract—The analysis of sets of degraded documents, like
historical ones, is error-prone and requires human help to
achieve acceptable quality levels. However, human interaction
raises 3 main issues when processing important amounts of
pages: none of the user or the system should wait for work;
information provided by a human operator should not be
restricted to local isolated corrections, but rather produce
durable changes in the system; the ability to interact with
a human operator should not increase the complexity of
document models nor duplicate them between analysis and
human interaction processes. To solve those issues, we propose
an iterative approach, based on a special mechanism called
visual memory, to reintegrate external information during page
analysis. So as to demonstrate the interest for existing systems,
we explain how we adapted a (rule-based) page analysis tool
to enable, in this iterative approach, a delayed interaction
with a human operator based on an adaptation of error
recovery principles for compilers and the well-known exception
handling mechanism. We validated our iterative approach on
sales registers from the 18th century.

Keywords-document analysis; degraded documents; docu-
ment sets; iterative analysis; user interaction;

I. INTRODUCTION

Degraded documents (like historical ones) prevent auto-
mated analysis from achieving sufficient quality level, and
for many tasks, human intervention is necessary to bridge
the semantic gap between machine and man. We identified
3 requirements for this kind of interaction.

As sets of documents we process are often made of tens
of thousands of pages, interacting with a human must not
make the human operator wait for work nor block the system
on each uncertainty which may arise (Req. 1: Viability).

Structure and content recognition are difficult in those
documents, and existing systems use sophisticated document
models to extract structured data. Then, interaction must
not increase model complexity with synchronization consid-
erations, nor fragment document knowledge (Req. 2: Sim-
plicity), in particular between analysis and human interface
processes to model-check answers supplied by a human.

When ran, the analysis system we use produces lots of
errors which are often similar or linked, as document sets
are organized in collections presenting stabilities in page
layouts and contents. For example, in neighbor pages of the
tabular document in Fig. 1, words written in a particular

Figure 1. Excerpt from a page of a tabular document (18th century).

column belong to the same lexicon. Error corrections are
also often similar or linked, like when, in a sequence of
numbers, correcting a number provides some contextual
knowledge for the others. Therefore, the interaction should
be durable, in the sense of [1], and permit the propagation
of corrections, the reprocessing of previous results, and
even system improvement, instead of only local and isolated
corrections (Req. 3: Durability).

We first consider, in Sec. II, how existing approaches
of interactive analysis comply with those requirements.
Sec. III presents our contribution to satisfy those needs: an
iterative analysis approach for which we exhibit the minimal
architecture required. We focus on how to turn existing
isolated page analyzers into interactive ones suitable for the
processing of document collections, using a visual memory
mechanism. Sec. IV details the modifications we made to
an existing (rule-based) page analysis tool to enable, in this
iterative framework, an asynchronous machine-initiated in-
teraction with a human operator. This implementation relies
on broadly available features easily adaptable to existing
page analyzers, and was tested on production tasks.

II. RELATED WORK

The simplest way to improve analysis results with human
interaction is post-processing error correction. PerfectDoc
[2] is a post-processing tool which enables bulk correction
of document structure and character recognition. While the
human operator does not wait for tasks, the system does not
validate human information nor it uses it to correct previous

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.107

503

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.107

503

interpretations. Therefore, we consider the human and the
system should cooperate during the analysis phase, not after.

Another interesting approach is DocMining [3], a very
general framework for document processing where docu-
ment processing units are successively invoked by a schedul-
ing module following a predefined scenario. A persistent
structure is associated to each document where each pro-
cessing unit consumes and produces elements. DocMining
answers several parts of our problem: the central storage
module enables a delayed interaction between components;
the persistent structure associated to each image permits
a simple information fusion; and human interaction can
be easily be implemented as a processing units. However,
as the persistent structure stores the state of the analysis
in this data-driven approach, there is no reprocessing of
each page. It limits human interaction to a local substitution
to automated processes, and forbids advanced cooperative
behaviors like model validation, correction of previous anal-
ysis stages, or guiding the analysis. Therefore an iterative
analysis where pages are reprocessed with new external
information is also necessary.

The smartFIX system [4] goes a step further in that
direction: not only it uses a central repository to enable a
delayed interaction, but is also proposes iterative recognition,
optimization and control of documents using explicit model
definitions: when human operators correct results, they are
automatically checked against those models. However, as
analysis modules process documents independently, this
approach may be somehow limited in the case of col-
lections of old documents. The lack of some strategy at
a collection level could prevent it from making use of
collection properties, like local word repetitions, by grouping
similar problems before validation to increase human oper-
ator efficiency. Furthermore, as few details are given about
information reintegration in analysis processes, it is hard to
know whether human interaction could be more elaborated
than the labeling of suspicious fields.

While existing approaches do not comply with all the
requirements for a viable, simple and durable interaction
when processing document collections, they provide inter-
esting insights. A central database can store information
about pages to transmit between processes and enable
an asynchronous interaction which avoids them to wait
(Req. 1). To remain maintainable, page analyzers have to
carry the whole document model and reprocess each page
to reintegrate or validate external information. The human
interface can then be homogeneously integrated as a page
analyzer, without duplicating the document model (Req. 2).
This iterative analysis fully makes use of human information,
as an efficient interaction relies on the ability to recompute
previous results (Req. 3). Furthermore, a practical system
also needs: i) a strategy module to coordinate the processes;
and ii) a mean to reintegrate external information in page
analyzers.

Page
Analyzer

Human
Interface

Central
Storage

Strategy
Module

1: process(I,MI(t))

2: MI(t+ 1)

3: process(I,MI(t+ 1))

4: MI(t+ 2)

Figure 2. A single step (repeated as many times as needed during the
iterative analysis) of a simple dialogue strategy between a page analyzer
and a human interface, showing the implied components of the architecture
and the visual memory MI associated to the image I .

III. ITERATIVE ANALYSIS OF DOCUMENT PAGES

We detail here the necessary components (visible in
Fig. 2) we identified, then we explain their iterative behavior
from a page analyzer’s point of view. Finally, we present the
interaction models that this iterative approach enables.

A. Required Components and Features

1) Strategy Module: The strategy module is responsible
for: i) coordinating the processes; and ii) providing them
with appropriate data and gather their results. It acts both
as a scheduler following a particular strategy, and a medi-
ator between processes backed by a central database. The
behavior of the strategy module should ensure that each
page-level process is invoked with enough data to progress
through each of its iterative invocations during the whole
analysis. Its abstraction level also enables, while we will not
present those elements, to: i) make use of collection context;
ii) increase human interaction efficiency: for example, by
grouping similar questions as we proposed in [5]; and iii)
improve the system.

2) Visual Memory: In order to reintegrate external in-
formation during the analysis of pages, we use a visual
memory. It is the support of information exchange and usage
between processes. To each page, we associate a persistent
dataset transmitted to each process when invoked by the
strategy module. Each process can change its content. Every
data it contains has a shape and a position in its image’s
referential (thus the “visual”). We note MI(t) the visual
memory related to the image I at time t.

3) Central Database: The central database stores the
associated visual memories for each page in the whole
collection. It enables: i) an asynchronous interaction between
processes; and ii) an improvement of human interaction
efficiency using properties of document collections, like by
grouping questions about similar fields to speed up their
manual correction. It provides a collection-centric view of
the information stored which can progressively grow.

504504

4) Page Analyzer: The page analyzer uses a document
model to try to extract relevant information from an image.
In an iterative analysis scheme, it is invoked with a image
reference I and the visual memory MI(t), and returns
MI(t+1) to the strategy module when done. Each iteration
reprocesses the whole image and enables: i) a validation
against the document model (without duplicating it) of ex-
ternal information; and ii) the production of new structured
results, based on (integrating) external information.

5) Human Interface: In this presentation, we consider the
human interface as a page analyzer. It shows an image and
associated memory to the human operator who then proposes
new information. In a more general approach, it would have
more important links with the strategy module, and would
consider elements from different pages.

B. Iterative Analysis Behavior

1) Global Information Flow: Fig. 2 shows a single step
(repeated as long as needed) of information exchange (for a
given page) between a page analyzer and a user interface
in a simple strategy which triggers each component one
after another for each page. The communication with the
central database is omitted for brevity. At time t, the strategy
modules first invokes the page analyzer on the image I , with
the memory MI(t). The strategy module gathers MI(t+1)
after the analysis, and transfers it to the human interface,
which, in turn, produces MI(t+ 2) and sends it back.

2) External Information Fusion with Visual Memory:
Information fusion between the current image I and external
information, MI , can be possible by: i) placing all data in the
image referential, with a shape and a position; ii) ensuring
that data, whenever it is extracted from the image or external,
is available at any moment during the analysis; iii) providing
equivalent access operations to each kind of data (read,
create, delete at least).

We recompute MI at the end of each step of this iterative
analysis.

C. Available Interaction Models for Page Analyzers

The iterative analysis we propose enables two comple-
mentary types of efficient user interaction for page analyzers.

1) Directed Interaction: Like for the machine-initiated
concept of [1], data to be analyzed by the human operator
is determined automatically by an algorithm. We use the
term directed to indicate the underlying question/answer
semantic. It requires the automated system to detect errors
and explicitly ask for resolutions. The human operator has
no choice on the information to provide, and the system can
more easily identify which of its subparts is to be corrected.

2) Spontaneous Interaction: This model is a bit different
from the human-initiated concept of [1]: the human operator
is free to provide or alter any information he wants for a
given page, but it may not produce changes in the automated
results, as the system may not validate or even consider those

elements. Even if spontaneous interaction is necessarily
limited to several information types by the system, the
difficulty is, for the operator, to provide useful elements, and
for the system to use them. On the other side, no automated
error detection is required. An example of such interaction
is, with the document of Fig. 1, when a human operator
notices that the system did not locate a number, and decides
to provide its position. The analyzer could then use this new
information and integrate it in the structured result.

Interaction at the Strategy Level: As this paper focuses
on how to adapt a page analyzer, we do not detail interaction
capabilities of the strategy module, inside which: i) interac-
tion can be made more efficient using machine learning, or
grouping similar requests as we proposed in [5]; and ii) a
“director” user could choose the processes to invoke in a
manual scenario, like for the user-driven mode of [6].

IV. IMPLEMENTATION OF A PAGE ANALYZER BASED ON
ERROR DETECTION, CORRECTION AND RECOVERY

We present here how we turned a rule-based page ana-
lyzer, based on the DMOS-P approach [7], into an iterative
process ready for a efficient directed interaction.

A. DMOS-P Framework and Language

DMOS-P [7] is a concept-driven grammatical document
analysis method. It uses a bi-dimensional extension of
Definite Clause Grammars, called Enhanced Position
Formalism (EPF), to describe pages. The following example
illustrates its syntax.

A ::= AT(top) && B. % clause 1, tried 1st
A ::= AT(bottom) && C. % tried if 1 fails

To recognize A, we try, at the top of the image, to recognize
B, and if it fails, we try, at the bottom, to recognize C. Like
attribute grammars, rules have input and output parameters
indicated by “+” and “-” signs, as illustrated by:

recognizeNumber(+NumPos, -Value) ::=
callClassifier(+NumPos, -Value).

B. Communication With Other Components

1) Visual Memory Data Structures: To enable the
communication with the human, the visual memory carries
(and locates in the image referential) questions and answers,
which are represented with the following containers

Q(Text,AnswerArea,DataType)
A(Data)

Text gives information about the problem and DataType
indicates the expected type for the content of the answer,
which is stored in its Data attribute. AnswerArea
indicates the area inside which the answer can be located.

2) How Questions Are Answered: Answering the ques-
tions is done outside of the page analyzer, in the human-
machine interface. At time t, it loads the image I , the
associated visual memory MI(t), and displays the ques-
tions. The human operator answers the questions, which are

505505

deleted, and locates each answer inside its acceptation zone
AnswerArea. At the end, MI(t+1) contains only current
and previous answers, kept for later use.

3) Challenges: The implementation has to: i) detect
errors and ask questions; ii) ensure that answers are used
by the analyzer to make progress instead of asking the same
questions forever; and iii) make as much progress as possible
in independent parts of the analysis if a problem arises.

C. DMOS-P Extensions for Directed Interaction

Three new EPF operators are provided to add the required
semantics in page descriptions. Their implementation is an
adaptation of error recovery principles for compilers. In
logical and functional languages, higher order and contin-
uation easily enable such approach, and in imperative ones,
exceptions (and annotations) can be used.

1) Asking Questions (Error Detection): Like one raises
an exception, we indicate a problem was detected and ask
for external information with the operator

raiseQuestion(+Text, +Zone, +DataType)

When called, it 1) adds a question in the visual memory
MI , with shape and position defined by +Zone to locate
the issue; and 2) continues the analysis just after the latest
invocation of catchQuestion. The AnswerArea attribute
of the question is automatically defined as the search
position during the last invocation of getAnswerOrTry.

2) Using Answer (Error Correction): Like with a try
keyword in many languages, we can identify the part of the
analysis impacted by a given problem with the operator

getAnswerOrTry(+DataType, -Result, +Rule)

where +DataType indicates the type of the content of
acceptable answers, and +Rule is a rule which has a unique
output parameter whose type is +DataType. Therefore,
the rule and the answer can provide elements of the same
type. When called, it looks at the current search position
for an answer A(Data) in MI where the type of Data is
+DataType. If it exists, the value of -Result is Data.
Otherwise, it invokes the rule +Rule and the value of the
output parameter of +Rule is used as value for -Result.
To enable interaction on structural elements, a special case
returns the zone of the answer if the content of the answer
as no value (meaning it is just a marker).

3) Continuing the Analysis (Error Recovery): Like with
a catch keyword, we indicate an upper bound in an analysis
branch where analysis can be safely continued when a
given problem arises with the operator

catchQuestion(+Rule)

where +Rule is a rule which may have any parameter.
When called, it invokes the rule +Rule and catches any
interaction request raised with raiseQuestion in that rule.
If no question is raised, the output parameters of +Rule

are well defined, otherwise they are left uninstantiated.

D. Usage Example

This example aims at locating and recognizing the num-
bers contained in the leftmost column of the document
shown in Fig. 1, using the trivial dialogue strategy of Fig. 2.

1) Description without Interaction: A simple non-
interactive description first locates the left column, and
inside this column, locates and recognizes each number.
For clarity, we only detail start and readAllNumbers.

start() ::= AT(allPage) &&
locateLeftCol(-ColPos) &&
AT(+ColPos) &&
readAllNumbers().

readAllNumbers() ::=
locateNumber(-NumPos) &&
recognizeNumber(+NumPos, -Value) &&
% use Value...
AT(under) &&
% loop until no more numbers...

2) Description with Directed Interaction: Useful memory
elements are lCol (of type colT) which indicates the left
column position, and num(Value) (of type numT) which
associates a value to a number located in the memory.
Modified elements are indicated in bold.

start() ::= AT(allPage) &&
getAnswerOrTry(colT, -ColPos,

locateLeftCol2(-ColPos)) &&
AT(+ColPos) &&
readAllNumbers().

readAllNumbers() ::=
locateNumber(-NumPos) &&
catchQuestion(

getAnswerOrTry(
numT, -Value,
recognizeNumber2(+NumPos,-Value)

))
% use Value (may be uninstantiated)
AT(under) &&
% we still can read other numbers...

locateLeftCol2(-ColPos) ::=
locateLeftCol(-ColPos).

% If automated version fails, ask.
locateLeftCol2(-ColPos) ::=

raiseQuestion("Where is the column?",
allPage, colT).

recognizeNumber2(+NumPos,-Value) ::=
recognizeNumber(+NumPos,-Value).

recognizeNumber2(+NumPos,-Value) ::=
raiseQuestion("What is this number?",

+NumPos, numT).

Furthermore, the invocation of the start rule is
automatically changed to: i) read MI(t); ii) invoke
start and catch any question; and iii) write MI(t+ 1).

3) Interaction Dialogue: For an image I where the
left column cannot be automatically located, and where
2 numbers over 4 are not recognized, a strategy with a
simple dialogue between the page analyzer and the human
interface (like in Fig. 2) produces the following behavior:

506506

At t0, the analysis starts.
MI(t0) = ∅

From t0 to t1, the page analyzer tries to locate the left
column and fails: it asks a question.

MI(t1) =
{Pa → Q(“Where is the column?”, Pa, colT)}

where Pa is a zone covering the whole page area.
From t1 to t2, the human operator answers the question

and provides the location of the column.
MI(t2) = {Ca → A(lCol)}

where Ca is the zone where the column is located.
From t2 to t3, the page analyzer try to locate the left

column and uses the answer. It starts locating and reading
numbers, but fails to read two of them.

MI(t3) = {Ca → A(lCol);
Na1 → Q(“What is this number?”, Na1, numT);
Na2 → Q(“What is this number?”, Na2, numT)}

where Na1 and Na2 are the location of the 2 numbers.
From t3 to t4, the human operator labels the 2 numbers.
MI(t4) = {Ca → A(lCol);Na1 → A(num(V1));

Na2 → A(num(V2))}

where V1 and V2 are the values of the 2 numbers.
From t4 to t5, the page analyzer reprocesses the whole

page and finishes the analysis using the answers. It produces
a consistent structured interpretation.

4) Implementation Advantages: This implementation of a
directed interaction allows to clearly separate the document-
related semantic (which part of the model is impacted by
an error, which parts are independent) from the iterative
error correction based on the visual memory. Apart from
enabling another implementation (like synchronous answer-
ing), it also permits to make use of human knowledge at
various levels in the analysis: field (lexical), presentation
and structure (syntactical), and function (semantical).

E. Application to Documents from the 18th Century

The implementation of the iterative analysis we presented
is one of the pillars enabling the assisted transcription of
handwritten words from sales registers of the 18th century
described in [5]. In the tests we conduced, 70 documents
(1206 words) were processed, and extracted words were
grouped by visual similarity in clusters, which were manu-
ally annotated if necessary. The iterative analysis permitted
to reintegrate and validate external information (extracted
using collection context) within a unique page model. This
global approach diminished the human labeling of words
from 21% (manual labeling of all suspicious elements) to
15% (28% gain) for an overall recognition rate of 80%.

V. CONCLUSION

We presented a solution to the problem of efficiency for
the necessary interaction during the analysis of document

collections. We showed that: asynchronous exchanges avoids
the user or the system to wait (viability); keeping a unique
page model, separated from temporal issues, inside the page
analyzer facilitates its use and enables an homogeneous
integration of human information (simplicity); and iterative
analysis permits reprocessing and other durable modifica-
tions of the analysis (durability).

We proposed an iterative approach for the analysis of
document pages, using a visual memory to permit an asyn-
chronous information exchange between analysis compo-
nents, which enables two interaction models: directed and
spontaneous. We implemented and tested the directed model
on a transcription task in historical documents presented
in [5], where the iterative approach permitted to make use,
during the page analysis, of information produced using
collection-level information. This implementation is based
on error recovery principles, very similar to exceptions in
their usage, and may be quite easily adapted to turn existing
isolated page analyzers into interactive ones.

ACKNOWLEDGMENT

This work has been done in cooperation with the Archives
départementales des Yvelines in France, with the support of the
Conseil Général des Yvelines.

REFERENCES

[1] G. Nagy and S. Veeramachaneni, “Adaptive and interactive
approaches to document analysis,” in Machine Learning in
Document Analysis and Recognition, ser. Studies in Computa-
tional Intelligence, S. Marinai and H. Fujisawa, Eds. Springer,
2008, vol. 90, pp. 221–257.

[2] S. Yacoub, V. Saxena, and S. Sami, “PerfectDoc: a ground
truthing environment for complex documents,” Proc. of IC-
DAR, vol. 1, pp. 452–456, 2005.

[3] E. Clavier, G. Masini, M. Delalandre, M. Rigamonti,
K. Tombre, and J. Gardes, “DocMining: A cooperative plat-
form for heterogeneous document interpretation according to
user-defined scenarios,” in Graphics Recognition, Lladós and
Kwon, Eds. Springer, 2004, vol. 3088 of LNCS.

[4] B. Klein, A. Dengel, and A. Fordan, “smartFIX: An adaptive
system for document analysis and understanding,” in Reading
and Learning, Dengel, Junker, and Weisbecker, Eds. Springer,
2004, vol. 2956 of LNCS.

[5] L. Guichard, J. Chazalon, and B. Coüasnon, “Exploiting
Collection Level for Improving Assisted Handwritten Words
Transcription of Historical Documents,” in Proc. of ICDAR,
2011.

[6] F. Bapst, A. Zramdini, and R. Ingold, “A scenario model ad-
vocating user-driven adaptive document recognition systems,”
Proc. of ICDAR, p. 745, 1997.

[7] B. Coüasnon, “Dealing with noise in DMOS, a generic method
for structured document recognition: An example on a com-
plete grammar,” in Graphics Recognition, Lladós and Kwon,
Eds. Springer, 2004, vol. 3088 of LNCS.

507507

