
Classifying Textual Components of Bilingual Documents
with Decision-Tree Support Vector Machines

Xiao-Rong Lin, Chien-Yang Guo, and Fu Chang
Institute of Information Science, Academia Sinica

128 Academia Road
Taipei, Taiwan

{eclipsex527, asdguo, fchang}@iis.sinica.edu.tw

Abstract—In this paper, we propose a method for classifying
textual entities of bilingual documents written in Chinese and
English. In contrast to earlier works that performed classifica-
tion on the level of textlines or documents, we apply our me-
thod to the level of textual components, as we must first identi-
fy Chinese components before merging them into intact cha-
racters and sending the latter characters to a Chinese recog-
nizer. To cope with a large training data set containing 365,672
samples, we employ a decision-tree support vector machine
(DTSVM) method, which decomposes a given data space into
small regions and trains local SVMs on those regions. By ap-
plying this method to train classifiers on various combinations
of feature types, we were able to complete each training
process within 3,500 seconds and achieve higher than 99.6%
test accuracy in classifying a textual component into Chinese,
alphanumeric, and punctuation. Moreover, the classification
had no strong bias towards any of the three categories.

Keywords—bilingual document, component, decision-tree
support vector machine, script and language identification

I. INTRODUCTION
The need to classify textual entities into a few categories

arises from building optical character recognition systems for
multilingual documents. For various characters, or character
parts, and non-characters (for example, punctuation) in a
multilingual document, one may classify these entities into
several categories before sending them to individual recog-
nizers.

Below, we present a brief survey of existing works on
this subject, usually under the title of script and language
identification. We divide the works into four approaches
based on the levels of entity from which they extract features.

Character-based approaches. Some works extract fea-
tures related to the shape or geometry of characters, such as
white hole, centroid, sphericity, and aspect ratio features
(Hochberg et al. [1]). Other works extract special features,
such as “water reservoir-based” features, that are characteris-
tic of Thai and Roman scripts (Chanda et al. [2]). Hochberg
et al. [3] formed cluster-based templates as the basis for cha-
racter matching.

Word-based approaches. Word shape tokens (WST)
formed out of character shape codes (CSC) were proposed
by Spitz [4], and have been applied extensively in classifying
European languages (Spitz [5]).

Textline-based approaches. Spitz [4] employed upward
concavity to classify Han-based and Latin-based textlines,
and also used optical density features to classify Chinese,
Japanese and Korean textlines. Other types of features in
textlines include the peaks of characters (Lee et al. [6]) and
the tops and bottoms of textlines (Padma and Vijaya [7]).

Image-based approaches. These approaches are based on
texture features extracted from text regions (Tan [8], Busch
et al. [9]).

In this paper, we propose a method for classifying textual
components (in short, components) in bilingual documents
comprised of Chinese and English. We classify these com-
ponents into three categories: Chinese, alphanumeric, and
punctuation. We consider Chinese punctuation and English
punctuation as the same type at this stage. They can be diffe-
rentiated easily via a post-processing step.

As mentioned earlier, there are many approaches on the
script and language identification. However, most of them
are applied at the level of textline or above, on the inherent
assumption that a textline or a higher-level entity contains
only one category of objects. This assumption does not hold
for our application in which English letters, Chinese charac-
ters, and punctuation marks may appear in the same textlines,
and in unpredictable locations (Figure 1).

Figure 1. Three categories of textual components (Chinese, alphanumeric,

and punctuations) appear in the same textlines.

One further complexity of our application arises from the
fact that Chinese characters may consist of more than one
component. So we need to identify the category of each
component, rather than a complete character. At this point,
we should clarify what we mean by “components.” The
components dealt by us derive from the following prepro-
cessing steps. First, we form connected components out of
black pixels (Chang et al. [10]). Next, we enclose those enti-
ties in rectangles, or boxes. Then, we merge two boxes into
one if they overlap. For this reason, ‘ is enclosed in a
single box, instead of two. Finally, when we deal with a ho-
rizontal (vertical) textline, we merge two boxes if their ver-
tical (horizontal) projections overlap. For this reason, the

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.106

498

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.106

498

English letters i and j have a single box. On the other
hand, has a single box when it appears in a vertical
textline, and two boxes when it appears in a horizontal tex-
tline. In a slight abuse of the language, we refer to the de-
rived boxes as components.

To solve the stated problem, we do not aim to invent new
features, since many useful features have been proposed in
the past. Rather, we apply a machine learning method, called
decision-tree support vector machine (DTSVM) (Chang et al.
[11]). SVM (Vapnik [12]) has proved to be a very powerful
tool for pattern classification. However, the complexity of
(non-linear) SVM is np, where n is the number of training
samples and p 2, thus preventing a straightforward applica-
tion to our problem in which there are 365,672 training sam-
ples.

DTSVM is a new method that speeds up the training of
SVMs while maintaining comparable test accuracy. The me-
thod first trains a decision tree to decompose a given data
space into small regions, and then trains local SVMs on the
decomposed regions. DTSVM is an effective and efficient
method for two reasons. First, training SVMs on decom-
posed regions of size reduces the complexity from np to
(n/) p = n p-1. Second, the decision tree may decompose
the data space so that certain decomposed regions become
homogeneous (i.e., they contain samples of the same label),
thereby reducing the cost of SVM training applied to the
remaining samples. Each factor plays an important role in
our application. In the experiments, we can build highly ef-
fective DTSVM classifiers on a tree whose leaf size falls
below 1,500 training samples. Moreover, over 80% of the
training samples flow to homogeneous leaves. The advan-
tage of having a fast learning machine is that we can experi-
ment with various combinations of feature types so as to find
the best classifier to satisfy our requirements.

Applying the top-10 DTSVM classifiers to an indepen-
dent data set comprised of 91,418 test samples, we obtained
above 99.6% test accuracy (the best of them achieved
99.8%), without a strong bias toward any category. Moreo-
ver, the DTSVM classifiers classified textual components at
an average rate of approximately 18,000 per second, while
the average rate of extracting features from components was
around 1,000 per second. All the computations were per-
formed on an IBM XSERIES-3550 Intel Xeon CPU 2.49
GHz with 8GB RAM. The above results show that the bot-
tleneck in our application lies in feature extraction, rather
than in classification.

The remainder of the paper is organized as follows. In
Section II, we present the DTSVM method. Section III de-
scribes our experiments, including the features extracted
from components and the classifiers built on multiple feature
types, as well as single types, and a sensitivity analysis. Sec-
tion IV contains some concluding remarks.

II. THE DTSVM METHOD
In this section, we give a brief description of the DTSVM

method. A more detailed description can be found in Chang
et al. [11]. The implementation of this method is available at

http://ocrwks11.iis.sinica.edu.tw/dar/Download/WebPages/D
TSVM.htm,

along with the source code, the execution file, and a few
exemplars.

We assume that all samples are represented as a d-
dimensional feature vector whose class type is specified by a
label y. For the decomposition scheme, we adopt the CART
method (Breiman [12]) or binary C4.5 (Quinlan [13]). To
train a CART decision tree, we start with the root, which
takes all the training samples as input. We then decide
whether to send each sample to the left-hand or the right-
hand child node. The same procedure is repeated for each
child node in a recursive manner.

At a given node E, we pick a feature fE and a split point
vE so that all elements of E with fE < vE are sent to the left-
hand child node, and the remaining elements are sent to the
right-hand child node. The values of f and v that maximize
the information gain are taken as the values of fE and vE re-
spectively, i.e.,

(,)
(,) arg max (,).E E E

f v
f v IG f v=

The information gain IGE(f, v) is defined as follows.

| | | |
(,) () () (),

| | | |
L R

E L R
E E

IG f v U E U E U E
E E

= − −

where EL consists of the elements of E with f < v, ER = E\EL,
and |S| is the size of any set S. Furthermore,

() () log (),y yy
U S p S p S= −

where p(Sy) is the proportion of S’s samples that are labeled
y.

We stop splitting a node E when one of following condi-
tions is satisfied: (1) the number of samples that flow to E is
lower than a ceiling size ; or (2) when IGE(f, v) = 0 for all f
and v at E. The value of in the first condition is determined
in a data-driven fashion, which we describe below. The
second condition occurs most often when all the samples that
flow to E are homogeneous.

After growing a tree, we train a local SVM on each of its
leaves, using samples that flow to each leaf as training data.
A tree and all local SVMs associated with its leaves consti-
tute a DTSVM classifier.

The parameters associated with a DTSVM classifier are:
(i) , the ceiling size of the decision tree; and (ii) the SVM-
parameters. All the local SVMs in a DTSVM classifier take
the same SVM-parameter values.

Given a training data set and a validation data set, we
build DTSVM classifiers on the training data set and deter-
mine the optimal parameter values with the help of the vali-
dation data set. The training process proceeds as follows.

In the first stage, we train a tree with an initial ceiling
size 0, and then train all the local SVMs with the same
SVM-parameters . Note that is expressed in boldface to

499499

indicate that it may consist of more than one parameter. Let
v(0,) be the accuracy rate of the resultant DTSVM clas-
sifier, measured on the validation data set. In our experi-
ments, we set 0 = 1,500.

In the subsequent stages, we construct DTSVM classifi-
ers with larger ceiling sizes; however, we only train their
local SVMs with the top-ranked , obtained by ranking in
descending order of v(0,). Let [k] be a set containing k
top-ranked . In our experiments, we set k at 5.

More specifically, we implement the following sub-
process, denoted as SubProcess(), for each in [k].

1. Set t = 0 and get the binary tree with the ceiling size
0.

2. Increase t by 1 and set t = 4 t-1. Modify the tree
with ceiling size t-1 to obtain a tree with ceiling size

t. Then, train local SVMs on the leaves with SVM-
parameters . Let v(t,) be the validation accuracy
of the resultant DTSVM classifier.

3. If v(t,)-v(t-1,) 0.5% and t is less than the size
of the training component, proceed to step 2.

4. If v(t,)-v(t-1,) < 0.5%, then () = t-1; other-
wise, () = t.

When we have conducted SubProcess() for each in
[k], we define opt to be the 0 such that v((0), 0) v((),
) for all in [k]. We also define opt to be (opt). We then

output the DTSVM classifier with the SVM-parameter opt
and the ceiling size opt.

III. EXPERIMENTAL RESULTS
This section is divided into a few subsections. They ad-

dress (A) the data set used in the experiments, (B) the types
of features based on which DTSVM classifiers are built, (C)
the results of training DTSVM classifiers on multiple feature
types, (D) the results of training them on a single feature type,
and (E) a sensitivity analysis.

A. The Data Set
For our experiments, we collected 1,517 images from bi-

lingual newspapers and magazines. The images were com-
prised of 29,907 textlines and 548,508 components. All the
components were labeled with their types. Finally, we nor-
malize these components to the size of 64×64. Table I shows
the information about them.

To conduct the experiments, we randomly divided our
data set into three subsets: training, validation, and test sub-
sets, in a ratio of 4:1:1. We built DTSVM classifiers on the
training subset, consisting of 365,672 samples. Following the
standard procedure, we normalized each feature vector to a
vector of values between 0 and 1. The local SVMs in the
DTSVM classifiers were RBF-based SVMs, whose parame-
ter values are specified as in [11]. To save both training and
testing times, we adopted a one-against-one training mode
(Knerr et al. [15]). We then used the validation subset, con-
sisting of 91,418 samples, to find the optimal parameter val-
ues. Finally, we applied the DTSVM classifier trained with
the optimal parameter values to the test subset, consisting of
91,418 samples, to obtain the test accuracy rate.

TABLE I. THE TEXT CONTENT OF OUR DATA BASE USED IN THE
EXPERIMENTS.

Textual Entity Size
Document 1,517
Textline 29,907

Component (Total) 548,508
Chinese Component 173,038

Alphanumeric Component 343,313
Punctuation Component 32,157

B. The Types of Features
Six types of features are used to describe the properties of

a component and the relation between the component and the
textline that contains it. We briefly describe the features be-
low. At the end of each description, we specify the ID of the
feature type and the number of features (Dim) in that type.

Density. A 64×64 bitmap image is divided into 8×8 re-
gions, each comprising 64 pixels. For each region, the counts
of black pixels are used as a density feature. ID = I, Dim =
64.

Cross Count. A cross count is the average number of
black intervals that lie within eight consecutive scan lines
that run through a bitmap in either a horizontal or vertical
direction. ID = II, Dim = 16.

Aspect Ratio. For a component C that appears in a hori-
zontal textline H, we obtain the following features: 1) bit ‘1’
for the slot indicating that H is a horizontal textline; 2) ‘0’
for the slot indicating that H is a vertical textline; 3) the ratio
between C’s height and H’s height; 4) the ratio between C’s
height and C’s width; 5) the ratio between C’s top gap and
H’s height; and 6) the ratio between C’s bottom gap and H’s
height. We follow the same procedure for a component that
appears in a vertical textline. ID = III, Dim = 6.

White Hole and Sphericity. The number of white compo-
nents and the number of black pixels (cf. [1]). ID = IV, Dim
= 2.

Upward Concavity. An upward concavity appears in ‘Y’
or ‘ ’ when a fork is formed (cf. [4]). ID = V, Dim = 64.

Centroid. A centroid is either the center of a horizontal
mass (black pixels) or the center of a vertical mass (cf. [1]).
ID = VI, Dim = 2.

C. DTSVM Classifiers Built on Multiple Feature Types
We have 6 types of features, so there are 64 combinations

of them. Since the DTSVM training and testing process is
fast, we endeavored to study all DTSVM classifiers, each of
which was built on one of the combinations. Because of
space limitations, we only consider the 10 combinations as-
sociated with the top-10 accuracy rates. Table II shows the
statistics of the 10 combinations, including the features in
each combination (e.g., the first combination includes types
I, II, III, and V), the dimension (Dim) of the resultant feature
vectors, the average speed of extracting one feature vector,
and the training and testing results of the DTSVMs for the 10
combinations. The H-rate is the percentage of training sam-
ples that flow to homogeneous leaves. The training time of
DTSVM includes the time required to build DTSVM clas-
sifiers and the time taken to find optimal parameter values.
The testing speed is the average time of testing one sample;

500500

and the online speed is the average speed of extracting fea-
tures from one sample and then testing it.

In Table III, we further show the test accuracy rates ob-
tained by the top-10 classifiers for the three categories. From
the results, we conclude that there is no strong favor for a
particular category at the expense of other categories.

D. DTSVM Classifiers Built on a Single Feature Type
The top-10 DTSVM classifiers, as shown in Tables II

and III, were built on multiple features types. It would be
interesting to know how a DTSVM classifier based on a sin-
gle feature type would perform. Table IV shows the results.
The best classifier was built on feature type I, achieving in a
test accuracy of 99.51%, which is lower than the test accura-
cy of all top-10 classifiers built on multiple feature types. It
is clear then that multiple feature types give rise to better-
performing classifiers.

E. Sensitive Analysis
To build global SVMs is not possible for our training da-

ta subset, due to its gigantic size. Instead, we trained a CART
on the training part and tested it on the test part, so that we
could have something to compare with DTSVM. To train
CART, we stop splitting a node E when IGE(f, v) = 0 for all f
and v at E. In the testing process, we assign each test sample
x the label that is shared by the majority members of the leaf
to which x flows. This implies that when this leaf has only
one member, we assign its label to x. We compare CART
with DTSVM for two purposes. First, we would like to see if
DTSVM performs any better than CART. For if it does not,
there is no point of adopting DTSVM as a solution. Second,

we would like to see how DTSVM and CART perform when
a certain percentage of noise are added to training samples,
in the sense that the labels of these samples are altered. Table
V shows DTSVM’s and CART’s test accuracy rates and how
much (Δ) DTSVM’s test accuracy rates exceed CART’s,
when p% of noise is added to the training data. Note that all
the numbers were derived from the DTSVM and CART
classifiers built on the first combination of feature types,
including density, cross count, aspect ratio, and upward con-
cavity.

From this table, we observe the following facts. (1)
DTSVM outperforms CART in test accuracy rate. (2) Both
classifiers’ test accuracy rates deteriorate as the noise level
increases. (3) CART’s test accuracy rates deteriorate much
faster than DTSVM’s.

IV. CONCLUSION
In this paper, we have considered the problem of classi-

fying each textual component into Chinese, alphanumeric,
and punctuation. Because of the large size of our training
data, we employed the DTSVM method to train classifiers.
One advantage of using a fast method for training and testing
was that we could experiment with various combinations of
feature types. As a result, we were able to find 10 classifiers
that achieved higher than 99.6% test accuracy and mani-
fested no strong bias towards any particular category. Com-
paring DTSVM with CART, we also found that DTSVM is
able to produce higher test accuracy rates and has better re-
sistance to noises. Thus, we recommend DTSVM not only
for its efficiency, but also for its robustness.

TABLE II. STATISTICS OF THE 10 COMBINATIONS OF FEATURE TYPES: THE TRAINING TIME IS EXPRESSED IN SECONDS; AND THE EXTRACTION, TESTING,
AND ONLINE SPEEDS ARE EXPRESSED IN COMPONENTS PER SECOND.

Top
Feature Training Testing

I II III IV V VI Dim Extraction
Speed

Ceiling
Size H-Rate Time Testing

Speed
Online
Speed

Test
Accuracy

1 Y Y Y Y 150 820 1,500 85.00% 3,145 18,114 785 99.80%
2 Y Y Y Y Y 152 633 1,500 83.81% 3,254 17,838 612 99.79%
3 Y Y Y 86 1,186 1,500 84.42% 2,705 18,932 1,116 99.79%
4 Y Y 70 2,033 1,500 81.03% 2,854 19,501 1,841 99.78%
5 Y Y Y 134 1,152 1,500 83.14% 3,035 19,312 1,087 99.78%
6 Y Y Y 72 1,174 1,500 81.12% 2,740 19,373 1,107 99.78%
7 Y Y Y Y 88 831 1,500 83.81% 2,769 18,114 795 99.78%
8 Y Y Y Y 136 514 1,500 83.30% 3,050 17,838 781 99.77%
9 Y Y Y 24 1,220 1,500 77.37% 1,363 18,932 1,165 99.64%

10 Y Y Y 144 901 1,500 75.44% 3,923 19,501 850 99.60%

TABLE III. THE TEST ACCURACY RATES FOR EACH CATEGORY OBTAINED BY THE TOP-10 DTSVM CLASSIFIERS.

Top Chinese Alphanumeric Punctuation
1 99.70% 99.90% 99.29%
2 99.68% 99.90% 99.29%
3 99.71% 99.88% 99.29%
4 99.67% 99.88% 99.37%
5 99.68% 99.87% 99.38%
6 99.66% 99.87% 99.40%
7 99.68% 99.87% 99.29%
8 99.63% 99.87% 99.40%
9 99.50% 99.81% 98.53%

10 99.47% 99.74% 98.81%

501501

TABLE IV. THE TRAINING AND TESTING RESULTS DERIVED FROM DTSVM ON THE 6 SINGLE FEATURE TYPES. THE TRAINING TIME IS EXPRESSED IN
SECONDS. THE TESTING AND ONLINE SPEEDS ARE EXPRESSED IN COMPONENTS PER SECOND.

ID
Training Testing

Ceiling
Size H-Rate Training

Time
Testing
Speed

Online
Speed

Test
Accuracy

I 1,500 67.52% 4,115 14,700 2,217 99.51%
II 1,500 55.56% 1,976 15,770 2,413 98.33%
III 1,500 56.18% 4,265 15,395 5,749 96.26%
IV 1,500 5.17% 35,021 5,862 1,688 87.65%
V 1,500 13.44% 11,982 4,971 1,733 87.26%
VI 1,500 0.44% 65,440 10,194 2,183 73.25%

TABLE V. THE TEST ACCURACY RATES OF DTSVM AND CART ON THE FIRST COMBINATION OF FEATURE TYPES AFTER CERTAIN PERCENTAGES OF
NOISE ARE ADDED TO THE TRAINING DATA.

Percentage of Noise DTSVM CART Δ
0.0% 99.80% 99.45% 0.35%
0.2% 99.26% 98.97% 0.29%
0.4% 98.83% 98.44% 0.38%
0.6% 98.48% 97.92% 0.56%
0.8% 98.21% 97.45% 0.76%
1.0% 97.99% 97.02% 0.97%
2.0% 96.52% 94.96% 1.56%
3.0% 94.94% 92.69% 2.25%
4.0% 93.84% 90.80% 3.04%
5.0% 93.11% 88.65% 4.46%

ACKNOWLEDGMENT
This work was supported in part by the National Science

Council, Taiwan, under Grant 100-2631-H-001-013 and 99-
2221-E-001-017 and Grant 99-2221-E-001-017-.

REFERENCES
[1] J. Hochberg, K. Bowers, M. Cannon, and P. Kelly. Script and

language identification for handwritten document images.
International Journal of Document Analysis and Recognition, 2(2-
3):45-52, 1999.

[2] S. Chanda, U. Pal, and O. Terrades. Word-Wise Thai and Roman
Script Identification. ACM Transactions on Asian Language
Information Processing, 8(3):1-21, 2009.

[3] J. Hochberg, P. Kelly, T. Thomas, and L. Kerns. Automatic script
identification from document images using cluster-based templates.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(2):176-181, February 1997.

[4] A. L. Spitz. Using character shape codes for word spotting in
document images. Shape, Structure and Pattern Recognition, 382-389,
1995.

[5] A. L. Spitz. Determination of the script and language content of
document images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(3):235-245, March 1997.

[6] D. S. Lee, C. R. Nohl, and H. S. Baird. Language identification in
complex, un-oriented and degraded document images. Proceedings of
the IAPR Workshop on Document Analysis Systems, 17-39, 1996.

[7] M. C. Padma and P. A. Vijaya. Identification of Telugu, Devanagari
and English script using discriminating features. International
Journal of Computer science & Information Technology, 64-78,
November 2009.

[8] T. N. Tan. Rotation invariant texture features and their use in
automatic script identification. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 751-756, July 1998.

[9] A. Busch, W. W. Sridharan, and S. Sridharan. Texture for script
identification. IEEE Transcriptions on Pattern Analysis and Machine
Intelligence, 27(11):1720-1731, November 2005.

[10] F. Chang, C.-J. Chen, and C.-J. Lu. A linear-time component-labeling
algorithm using contour tracing technique. Computer Vision and
Image Understanding, 93(2):206-220, 2004.

[11] F. Chang, C.-Y. Guo, X.-R. Lin, and C.-J. Lu, Tree Decomposition
for Large-Scale SVM Problems, Journal of Machine Learning
Research, 11(Oct):2935 2972, 2010.

[12] V. Vapnik. The Nature of Statistical Learning Theory. Springer-
Verlag, 1999.

[13] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Chapman and Hall, 1984.

[14] J. R. Quinlan. Induction of Decision Tree. In Machine Learning, 1(1):
81-106, 1986.

[15] S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer learning
revisited: A stepwise procedure for building and training a neural
network. In J. Fogelman, editor, Neurocomputing: Algorithms,
Architectures and Applications. Springer-Verlag, 1990.

502502

