
HMM-Based Recognition of Online Handwritten Mathematical Symbols Using
Segmental K-means Initialization and A Modified Pen-up/down Feature

Lei Hu
Department of Computer Science
Rochester Institute of Technology

Rochester, USA
lei.hu@rit.edu

Richard Zanibbi
Department of Computer Science
Rochester Institute of Technology

Rochester, USA
rlaz@cs.rit.edu

Abstract—This paper presents a recognition system based on
Hidden Markov Model (HMM) for isolated online handwritten
mathematical symbols. We design a continuous left to right
HMM for each symbol class and use four online local features,
including a new feature: normalized distance to stroke edge.
A variant of segmental K-means is used to get initialization of
the Gaussian Mixture Models’ parameters which represent the
observation probability distribution of the HMMs. The system
obtains top-1 recognition rate of 82.9% and top-5 recognition
rate of 97.8% on a dataset containing 20281 training samples
and 2202 testing samples of 93 classes of symbols. For multi-
stroke symbols, the top-1 recognition rate is 74.7% and the
top-5 recognition rate is 95.5%. For single-stroke symbols, the
top-1 recognition rate is 86.8% and the top-5 recognition rate
is 98.9%. (MacLean et al., 2010) applied dynamic time warping
algorithm on all the 70 classes of single-stroke symbols. Their
top-1 recognition rate is 85.8%, and top-5 recognition rate is
97.0%. Our system gets top-1 recognition rate of 85.5% and
top-5 recognition rate of 99.1% on the same 70 classes of single-
stroke symbols.

Keywords-Hidden Markov Model; mathematical symbol
recognition; segmental K-means

I. INTRODUCTION

Mathematical expressions are an indispensable component
of scientific and technical literatures [1]. So far the most
popular way to enter mathematical expressions is either in
a linear format (e.g., TEX), or by using a structured editor
(e.g., equation editor available with MS-Word) [2]. Produc-
ing large and complicated expressions in these two ways
requires a lot of time and mental effort. With the emergence
of pen-based electronic devices, such as PDAs and tablet
PCs, people can simply write mathematical expressions on
the electronic tablet to let the computer recognize them
automatically.

Recognition of mathematical expressions includes two
major steps: symbol recognition and structural analysis [1].
Symbol recognition is the basis of the structural analysis.
It consists of two phases: symbol segmentation and isolated
symbol recognition. The input data of online handwritten
mathematical expression is a set of strokes, and a mathe-
matical symbol may comprise more than one stroke. Symbol
segmentation aims to transform the sequence of strokes into

a set of symbols, which will be classified in the isolated
symbol recognition stage.

In this paper, we will focus on the recognition of isolated
online handwritten mathematical symbols based on Hidden
Markov Model (HMM). We establish a continuous left to
right HMM for each symbol class. A variant of segmental
K-means is used to get initialization of the Gaussian Mixture
Models’ parameters representing the observation probability
distribution of the HMMs. We modify pen-up/down informa-
tion into a new feature, normalized distance to stroke edge.
We use four online local features in total, which contain
more information about each point. Experiment results show
that the variant of segmental K-means can produce better
initialization of the Gaussian Mixture Models’ parameters
and normalized distance to stroke edge is a better feature
than the pen-up/down information.

II. RELATED WORK

A number of approaches have been proposed for online
handwritten mathematical symbol recognition. A group of
methods is based on nearest neighbor scheme. Smithies
et al. [3] proposed a fast user-trained algorithm based
on nearest neighbor classification in a feature space of
approximately 50 dimensions. Vuong et al. [4] proposed
an extended elastic matching algorithm. Elastic matching
is achieved through calculating the minimum distance be-
tween the template symbol and input symbol with dynamic
programming. During the matching process, every point of
the input symbol is matched against that in the template
symbol. Apart from Euclidean distance between points, the
extended elastic matching algorithm also considers slope and
curvature information during its matching process. MacLean
et al. [5] presented a greedy approximate solution to the
dynamic time warping algorithm for recognizing single-
stroke symbols and the time complexity of the algorithm
is linear.

There have also been many rule-based methods. Fitzgerald
et al. [6] used fuzzy logic to extract features, such as
Line, C-shape and O-shape, and classify symbols. In symbol
recognition phase, the system uses two types of fuzzy rules:
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high-level rules and low-level rules. High-level rules define
the properties the input symbol must have if it belongs
to a particular class. Low-level rules assess the extent to
which these properties are present. Belaid et al. [7] proposed
an approach based on decision tree classifier. The non-leaf
nodes in the decision tree are the set of rules to classify the
input symbol. Curvature, direction and drawing length are
used as features.

Another group of methods combine different classifiers.
Garain et al. [2] presented a symbol recognition system to
combine two different kinds of classifier. The first classifier
employs a nearest neighbor classification and the second one
uses a left to right HMM. Both the classifiers make use
of direction change and trajectory length as features. The
system combines the two classifiers through three ways:
highest rank method, Borda count and logistic regression,
and logistic regression gets the best performance.

There are several mathematical symbol recognition sys-
tems based on statistical approach. Matsakis [8] presented
a symbol recognition method based on a quadratic dis-
criminant classifier. Winkler et al. [9] proposed a symbol
recognition system based on HMM. Their system extracts
both on-line features and off-line features. They builds three
semi-continuous left to right HMMs for each symbol to
combine the classification results. Two HMMs use the off-
line features while one HMM uses the on-line features. The
online features they used are the local position, the sine and
cosine value of the angle between the horizontal axis and the
vector connecting the previous and the current point, and the
information whether the current point belongs to a stroke or
to an interpolated hidden stroke.

III. METHODOLOGY

A. preprocessing

Our preprocessing method is similar to the one in [10], but
has fewer steps. Our preprocessing procedure just consists
of four steps: duplicate point filtering, size normalization,
smoothing and resampling. These steps reduce noise and
unuseful information for classification.

Duplicate point filtering: duplicate point is the point that
has the same (x, y) coordinates as the previous point and
cannot give any useful information for classification.

Size normalization: the class of a symbol is independent
of its size, therefore size normalization is needed to eliminate
the variation of size. It is achieved by transforming the y
coordinate’s range to be [0, 1] while preserving the width-
height aspect ratio.

Smoothing: smoothing is used to reduce the noise infor-
mation caused by the digital pen’s jitter. Except the first point
and the last of every stroke, the other points’ coordinates are
replaced by the average of the coordinates of current point,
the previous point and the following point.

Resampling: the original points are recorded equidistantly
in time but not in space. In order to remove the influence

of writing velocity, we resample each symbol to 30 points
along the original trajectory with equal distance between the
consecutive points by the method in [11].

B. feature extraction

Liwicki et al. [12] applied a sequential forward search on a
feature set in order to discover which features are significant
for handwriting recognition. A Hidden Markov Model and
a bidirectional long short-term memory network (BLSTM)
based recognizer were used as recognition engines. They
applied many operations to reduce noise and normalize the
skew, slant, width and height before feature extraction.

There are 25 features in the feature set: (1) pen-up/down,
(2) hat-feature, (3) speed, (4) normalized x-coordinate, (5)
normalized y-coordinate, (6,7) cosine and sine of writing
direction, (8,9) cosine and sine of curvature, (10-18) con-
text map, (19) vicinity aspect, (20) vicinity curliness, (21)
vicinity linearity, (22,23) cosine and sine of vicinity slope,
(24) ascenders, and (25) descenders.

The experiment results [12] show that the recognition
rate with only five features approaches the recognition rate
using all the 25 features. The experiment results [12] also
show that the first five iterations of the sequential forward
search algorithm with HMM based classifier and BLSTM
based classifier have selected the same best five features.
In addition, in the first five iterations of the sequential
forward search algorithm with HMM based classifier, the
ranking of the first five features does not change. It can
be concluded that the five features are very stable and
contain more important information than other features for
the classification. The best five features are the cosine of the
slope, the normalized y-coordinate, the density in the center
of the context maps, the pen-up/down information, and the
sine of the curvature.

We use all four online features among the best five fea-
tures: the cosine of the slope, the normalized y-coordinate,
the pen-up/down information, and the sine of the curvature.
A 4-dimensional feature vector is computed for each point of
the sample. Because the number of the features is small, we
can get a more efficient classifier, in terms of computation
and storage.

Pen-up/down: a binary feature denoting whether the
digital pen has contact with the electronic tablet or not at
time t.

Normalized distance to stroke edge (NDTSE): in order
to add the location information to the pen-up/down feature,
we take the distances to the beginning and the end of the
stroke into account and replace the pen-up/down feature with
NDTSE. The new feature can be computed as :

NDTSE(s, t) =

{
1− |de−db|

ls
, for actual stroke

−(1− |de−db|
ls

), for interpolated stroke,
(1)
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where ls represents the length of the stroke s which the
current point x(t), y(t) belongs to; de represents the distance
between the current point and the last point of s; db
represents the distance between the current point and the
first point of s. Actual stroke is the visible stroke, while
interpolated stroke is the hidden parts of the trajectory,
where the digital pen does not contact with the electronic
tablet. For the point belongs to actual stroke, NDTSE is
nonnegative; for the point belongs to interpolated stroke,
NDTSE is nonpositive. Fig. 1 visualizes the new feature.

Figure 1. New feature: normalized distance to stroke edge, containing the
pen-up/down information and the location information of the current point

Normalized y-coordinate: the vertical position after size
normalization.

Vicinity slope α: the vicinity slope of the current point
(x(t), y(t)) is represented by the cosine and sine of the angle
between the straight line connecting the point (x(t−2), y(t−
2)) and the point (x(t+2), y(t+2)) and the horizontal across
the point (x(t−2), y(t−2)). α in Fig. 2 represents the slope.

Curvature β: the curvature of the current point
(x(t), y(t)) is represented by cosine and sine of the angle
between the straight line joining point (x(t − 2), y(t − 2))
and point (x(t), y(t)) and the straight line joining point
(x(t), y(t)) and point (x(t + 2), y(t + 2)). β in Fig. 2
represents the curvature.

Figure 2. Slope(α) and curvature(β)

C. HMM classifier

An HMM process is a doubly stochastic process [13].
The underlying process is hidden from observation and is

represented by a state transition probability matrix, where
the current state just depends on the previous state. The
observable process is determined by the underlying process
and is represented by an observation probability distribution
function, where the current observation just depends on the
current state. So an HMM is specified by the parameter set
(A,B, π). A denotes the state transition probability matrix;
B denotes the observation probability distribution; π is the
initial state distribution.

Each written symbol can be represented by a sequence of
feature vectors O, defined as

O = O1, O2, · · · , OT , (2)

where Ot is the feature vector observed at time t. The
goal of the HMM classifier is to find the probability that
a specific class is the most likely to occur given a sequence
of observations. Therefore the symbol recognition problem
is to compute

argmax
i

P (λi | O), (3)

where λi is the i’th symbol class. Bayes’ Rule gives

P (λi | O) =
P (O | λi)P (λi)

P (O)
. (4)

P (O) is the same for all classes. If all classes have the same
priori probability P (λi), then the symbol recognition can be
regarded as that of computing

i∗ = argmax
1≤i≤N

P (O | λi). (5)

1) Model Selection: There is no theoretically optimal
method to choose the type of model (ergodic or left to
right), the model size (number of states) and observation
probability distribution (discrete or continuous, single or
multi-mixture) [13] for an HMM. The type of model, the
model size and the observation probability distribution are
determined empirically.

In our HMMs, we use the linear topology. For each state,
only the transition to itself or the next state is permitted.
The observation probability for a given feature vector is
determined by Gaussian Mixture Models and the covariance
matrix of the mixture component is diagonal.

To choose the model size and the number of Gaussian
components per state, we did experiments on the ten dig-
its extracted from the corpus of handwritten mathematical
expressions [14] to find the effect of number of states and
number of Gaussians on the recognition rate. The experiment
results are shown in Table I. The recognition rate is the
average of ten trials.

We assigned the same weight to the top-1 and top-5
recognition rate. It can be found with 4 Gaussians per state,
model with 6 states acquires the best performance. When the
number of states is fixed to be 6, model with 5 Gaussians
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Table I
AVERAGE TEST RECOGNITION RATE OF TEN TRIALS ON TEN DIGITS

EXTRACTED FROM THE CORPUS [14] OF DIFFERENT COMBINATIONS OF
STATES AND GAUSSIANS

Model Size top-1 top-5
3 states 4 Gaussians 0.960 0.997
4 states 4 Gaussians 0.965 0.998
5 states 4 Gaussians 0.966 0.998
6 states 4 Gaussians 0.968 0.999
7 states 4 Gaussians 0.969 0.994
6 states 2 Gaussians 0.960 0.997
6 states 3 Gaussians 0.963 0.995
6 states 5 Gaussians 0.974 0.999
6 states 6 Gaussians 0.968 0.994

per state gets the best performance. Therefore, each model
has six states and each state contains five Gaussians in our
system.

2) Initialization: Theoretically speaking, the re-
estimation process of Baum-Welch algorithm can assign
values to the HMM’s parameters which can make the
likelihood function to get a local maximum [13]. But there
is no straightforward way to choose good initial estimates of
the HMM parameters to guarantee that the local maximum
is the global maximum or a strong local maximum of the
likelihood function.

In most cases, either random or uniform initial estimates
of the initial state distribution π and state transition proba-
bility matrix A is enough with Baum-Welch algorithm for
producing useful reestimates of these parameters. But the
reestimates of the Gaussian parameters are very sensitive to
the initial estimates [15]. Therefore good initial estimates of
Gaussian parameters are necessary. In this paper, we set the
initial state distribution to be π = 1, 0, 0, 0, 0, 0 and keep it
fixed during the training process. That means the first feature
vector out of a sequence is fixed to the first state. But we
don’t fix the last feature vector out of a sequence to the last
state. Discrete uniform distribution is used to give the initial
state transition probability matrix A.

We use a variant of segmental K-means algorithm [15]
to get the initial parameters of observation probability dis-
tribution B. We first assign random values to the Gaussian
parameters. Then over five iterations, we use the Viterbi al-
gorithm [16][17] to get the optimal path, having to terminate
at the final state, of all observation sequences and segment
the feature vector of each point according to the optimal
path into the six states. After each state gets the set of the
feature vectors that are assigned to it in the current and
all previous iterations, K-means algorithm is used to cluster
the observations into five clusters and update the Gaussian
parameters of each state. But segmental K-means segments
all training sequence according to the optimal path given by
the Viterbi algorithm. Each state just can get the observations
that occur within it in the current iteration.

Table II
93 SYMBOL CLASSES CAN BE RECOGNIZED BY OUR SYSTEM

0 1 2 3 4 5 6 7 8 9
a b c d e f g h i j
k l m n o p q r s t
u v w x y z A B C D
E F G H I J K L M N
O P Q R S T U V W X
Y Z α β δ ∆ ε = γ Γ
≥ > - ∞

∫
[ ( µ φ π

Π + ψ ] ρ ) σ Σ
√

τ

θ ξ ζ

3) Training: There are a number of methods for the
HMM training, such as Baum-Welch algorithm [18], Genetic
Algorithm [19], maximum margin learning [20] and maxi-
mum mutual information estimation [21]. In our system, we
use the Baum-Welch algorithm. The Baum-Welch algorithm
is a type of EM(expectation-maximization) method based
on the maximum likelihood criterion. After each iteration of
the Baum-Welch algorithm, P (O | λ̄)>P (O | λ) and λ̄ will
replace λ, where λ̄ = (Ā, B̄, π̄) represents the re-estimated
model and λ = (A,B, π) denotes the previous one. The
algorithm will run until it is convergent or the maximum
iteration is finished.

4) Recognition: In the recognition phase, all HMMs
are used with the Forward algorithm [13] to calculate the
probability of the observation sequence, O = O1O2 · · ·OT ,
given the model λ, P (O | λ). The symbol with the maximal
class conditional probability will be selected as the class
label.

IV. DATASET AND EXPERIMENT RESULTS

We extract all symbols from a new publicly available,
ground-truthed corpus of handwritten mathematical expres-
sions [14], getting 100 different symbol classes. These
symbols were written by 20 writers. We discard six symbol
classes whose samples are less than 50 and the symbol ’dot’,
because they are not adequate or not suitable for training the
corresponding HMMs. Table II shows all the 93 classes of
symbols which can be recognized in our system. The dataset
is unbalanced, and different symbol have different numbers
of samples. For each class of symbol, we use 90% samples
as the training set and the other 10% as the testing set. There
are 20281 samples in the training set and 2202 samples in
the testing set.

We did experiments to find out whether segmental K-
means can get better initialization of the Gaussian parame-
ters. The control group use K-means to get the parameters
for the 30 Gaussian components and assign them to six
states randomly. Fig. 3 shows the comparison of the average
recognition rate of 20 trials and the standard deviation
between using K-means and segmental K-means. With seg-
mental K-means, the average recognition rates are higher,
and the standard deviations are much lower. Two-tailed,
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unequal variance t-test (n=20) shows the increase of top-
5 recognition rate for all symbols is statistically significant,
when α = 0.05. It can be concluded that segmental K-means
can give better initialization of the Gaussian parameters.

With segmental K-means, we did experiments to compare
the performance using NDTSE with using pen-up/down. Fig.
4 shows the comparison of the average recognition rate of
20 trials and the standard deviation between using pen-
up/down and NDTSE. The recognition rates with NDTSE
are higher. Two-tailed, unequal variance t-test (n=20) shows
the increases of top-1 and top-5 recognition rates for all
symbols are both statistically significant, when α = 0.05.
It can be concluded that NDTSE is a better feature than
pen-up/down.

With segmental K-means and NDTSE, we did exper-
iments to compare the performance using different prior
probability represented by the symbol’s sample ratio with
using the same prior probability. With different prior prob-
ability, the system has slightly higher recognition rates,
but the improvements are not statistically significant. This
shows our system is robust and does not rely on the prior
knowledge of the specific data set.

Using segmental K-means, NDTSE and different prior
probability, our system obtains best top-1 recognition rate of
82.9% among 20 trials for all symbols. In the trial producing
the best top-1 accuracy for all symbols, top-5 recognition
rate for all symbols is 97.8%; for multi-stroke symbols, the
top-1 recognition rate is 74.7% and the top-5 recognition rate
is 95.5%; for single-stroke symbols, the top-1 recognition
rate is 86.8% and the top-5 recognition rate is 98.9%.

MacLean et al. [5] applied their method on all the single-
stroke symbols of the same corpus, 70 classes in total,
including 0-4, 6-9, a-e, g-h, k-s, u-w, y-z, B-D, G, L-O,
Q-S, U-W, Z, α, β, δ, ∆, ε, γ, >, -, ∞,

∫
, [, (, <, µ, Ω, Π,

], ρ, ), σ, Σ, √, θ, ξ and ζ. The best top-1 recognition rate
is 85.8%, and the best top-5 recognition rate is 97.0%. We
also applied our system to the 70 kinds of symbols, getting
best top-1 recognition rate of 85.5%. In the trial producing
the best top-1 accuracy, the top-5 recognition rate is 99.1%.

Through analyzing the confusion matrix, we find many
classification errors are caused by symbols are classified to
the classes with the similar shape, such as the number ’0’,
the capital letter ’O’ and the small letter ’o’. This explains
the differences between the top-1 recognition rates and the
top-5 recognition rates. Therefore the recognition rate can be
improved by building discriminatory classifiers aiming for
these confused classes or collapsing these confused classes
to a single class.

V. CONCLUSION

This paper presents a system for recognition of isolated
online handwritten mathematical symbols. The classifier is
based on HMM and we use 4-dimensional online local
features. A new feature, normalized distance to stroke edge,

is defined based on pen-up/down information. A variant
of segmental K-means is used to get initialization of the
Gaussian Mixture Models’ parameters which represent the
observation probability distribution of the HMMs. The initial
experiment results are encouraging in light of we just use
four features.

For future work, more extensive experiments should
be conducted for performance comparison with different
preprocessing methods and different feature sets. In
addition, we will optimize the topology of the HMMs and
extend the research on recognition of isolated mathematical
symbols to the recognition of mathematical expressions.
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