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Abstract—A method for locating mathematical expressions
in document images without the use of optical character recog-
nition is presented. An index of document regions is produced
from recursive X-Y trees produced for each page in the corpus.
Queries are provided as images of handwritten expressions, for
which an X-Y tree is computed. During retrieval, the query is
looked up in the document region index using features of its X-
Y tree, producing a set of candidate regions. Candidate regions
are ranked by the similarity of vertical pixel projections in
their upper and lower halves with those of the query image, as
computed using Dynamic Time Warping of the image columns.
In an experiment, ten participants each wrote twenty queries
from a 200-page corpus. On average, the top-10 retrieval
candidates included a candidate covering 43.3% of the test
query image (o = 14.0), with the correct page being returned
between 30.0% and 85.0% of the time across participants
(n = 63.2%, o = 14.9%). When testing using the original
query images, 90.0% of the queries were retrieved correctly.

Keywords-Mathematical Information Retrieval; Math Recog-
nition; Keyword Spotting

I. INTRODUCTION

Most documents do not contain markup for math expres-
sions, not even vector-based electronic document encodings
such as Portable Document Format (.pdf) files. One way to
address the problem is to insert annotations for math into
existing files. Kanahori and Suzuki propose a method for
doing this by inserting I&IEX into .pdf files produced by
a commercial Optical Character Recognition (OCR) system
[1], after passing detected math regions through the Infty
math recognition system [2]. A number of methods for
recognizing typeset and handwritten mathematics have been
devised, and surveys on the subject are available [3]-[5].

Existing Mathematical Information Retrieval systems re-
quire queries in the form of a string (e.g. IATEX and text
[6], MathML [7], or Lisp [8]), provided manually or using
a graphical template editor (with templates for fractions,
summations, arrays, etc.). We believe that many users would
prefer to simply draw expressions by hand, and query
using the appearance of the expression, as shown in Figure
1. Further, we hypothesize that handwritten queries may
be retrieved from technical document images using page
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segmentation and image-similarity algorithms, without the
use of optical character recognition, similar to keyword
spotting techniques [9], [10].

The contributions of this paper include: 1) to our knowl-
edge, the first system for querying math in technical doc-
uments using images of handwritten queries (image-based
retrieval of isolated IXTEX expressions has been explored
[11]), and 2) an experimental validation of the proposed
technique. We summarize the underlying segmentation and
image matching algorithms in Sections II and III, provide
the indexing and retrieval model in Section IV, present an
experiment testing our model with handwritten and image
queries in Section V, and conclude in Section VI.

II. PAGE AND QUERY SEGMENTATION: X-Y CUTTING

X-Y trees represent a hierarchically nested set of rectan-
gular regions (see Figure 2). Nodes represent image regions,
with the whole image at the root. Children of a node
represent subregions obtained by cutting the image at gaps
in a horizontal or vertical histogram of pixel intensities. In
standard X-Y trees, cuts are made at all gaps in the pixel
projection profile (histogram) (see Figure 2(c)), with cuts
alternating in the vertical and horizontal directions (com-
monly starting with the vertical direction). In recursive X-Y
trees, a single cut is made either horizontally or vertically,
depending on the direction with the largest projection gap
(see Figure 2(b)). This produces a binary tree.
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Figure 1.
to the ten best-matching document pages, with the region producing the
best match shown. Results are listed in decreasing order of rank (top row:
ranks 1-5, bottom row: ranks 6-10)
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(b) Recursive X-Y Tree

(c) Standard X-Y Tree

Figure 2. Recursive [15] and Standard [14] X-Y cutting of the expression:
% y. Recursive X-Y cutting splits the image at the largest horizontal or
vertical projection gap at each node, while standard X-Y cutting alternates
in the vertical and horizontal direction, cutting at all projection gaps

Our retrieval method was inspired by the projection-
profile-based structural analysis methods of Okamoto et al.
[12], [13] for mathematical notation. It occurred to the
authors that 1) Okamoto’s et al.’s projection-based technique
may be understood as a variation of X-Y cutting algorithms
used to segment pages for document analysis and recognition
[14], [15], and 2) due to the two-dimensional arrangement
of symbols in mathematical expressions, X-Y trees for math
expressions would often differ significantly from those for
text regions, and 3) X-Y trees provide some invariance to
the scale and relative sizes of symbols, as they describe only
the topology (relative position) of regions in an image. This
suggested that one might meaningfully compare X-Y trees
for handwritten queries to those for page regions, and return
page regions with similar X-Y structure.

In our approach, candidate query match regions are ob-
tained using the (coarse) similarity between recursive and a
restricted (depth-two) standard X-Y trees for the query and
page regions, along with a simple edge distance feature (see
Section 1V).

To avoid producing noisy trees, a threshold is often used to
filter narrow cuts. Cutting thresholds may be defined using
estimates for dominant character heights and widths [16],
[17]. We use a minimum cut width of 2 pixels for the two
top-level standard X-Y cuts performed on each region; in
our experiments handwritten expressions were written on
paper and then scanned, with very little noise remaining
after binarization.

III. IMAGE MATCHING: DYNAMIC TIME WARPING

Candidate regions are ranked by visual similarity, making
our approach a form of content-based image retrieval [18].
Early on we considered using a measure based on tree
edit distance to match query and candidate X-Y trees [19],
but abandoned this due to the computational cost involved.
Marinai et al. came to a similar conclusion in their work
on X-Y tree-based document image retrieval [20], where
originally they employed tree edit distance.
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Using the University of Washington III Database [21],
we tried a number of different image distance metrics, of
which a form of Dynamic Time Warping (DTW) was most
effective [22]. The DTW metric that we use is the minimum-
cost alignment between columns of query and candidate
region images, after candidates are scaled so that query and
candidate image heights match (preserving the aspect ratio
of each). For the image columns, we use features similar
to those used by Rath and Manmatha [10] for spotting
words in historical documents. We first compute binary
pixel projection profiles for the top and bottom half of an
image, normalizing them by the image height so that each
projection value lies in the interval [0,0.5]. Each column
is then represented by its values in the upper and lower
profiles (u, ). To reduce computational cost, we sub-sample
the upper and lower profiles, using the average upper/lower
half profile distances for every five columns (this value was
chosen empirically, again using the UW-III database). For
images with widths that are not a multiple of five, the
average value of the remaining columns is stored in the final
feature vector element.

Formally, the dissimilarity between the query and candi-
date feature vectors (Fg, F¢) is given by D(|Fg|, |Fc|), the
minimum cost alignment between the averaged projection
profiles.

(Z - 1)])
D(i,j) = min D(i,j—1) p+d@,5) @
DGi—-1,7-1)
d(i, ) = (u(Fgli]) — u(Fc i) + ((Foli]) — l(Fc[j])();
where D(0,0) = 0, D(z,0) = , and

D(0,y) = oo for 1 < y < |F¢|. The distance between a
pair of feature vector elements d(i, j) is the sum of squared
differences between the upper and lower projection values.
Unlike Rath and Manmatha [10], we do not constrain the
warping path, nor do we normalize the DTW distance by
the length of the minimum cost warping path. This is in
part because many of the regions to be compared against are
nested in the X-Y tree, and we do not mind penalizing longer
warping paths as a result. The complexity of the distance
computation is O(|Fg||Fc]).

IV. DOCUMENT INDEXING AND RETRIEVAL

We apply recursive X-Y cutting to each document page
to be indexed. All nodes in the X-Y tree with fewer than 90
nodes and a depth of at least two are stored in the index.
This avoids indexing regions that have many more connected
components than common expressions [23] and expressions
that are very small (there at most four connected components
in a recursive X-Y tree of depth two). Note that we do not
make use of the directions of cuts.

Each region in the index is cut again using two standard
X-Y cuts: just one vertical and one horizontal cut (see



Section II). This provides a simple high-level description of
the structure of the expressions. Finally, using the upper and
lower contours for each region, we compute the maximum
relative offset for the upper and lower contours, and then
record the smaller of these two offsets. More formally, for
each column {Iy, I, ...I,,}, the distance from both the top
edge and bottom edge are calculated and saved in two
sets: top{I1, Is,...I,} and bottom{I,Is,...I,,}. We then
calculate the smaller maximum offset as R, :

min(maz(top), maz(bottom))
Ry,

where Ry, is the region height. The expectation here is that
text regions will often have small R, values, particularly
when the bottom of the text rests directly on the writing
line (e.g. for the word ‘and’).

Each indexed region is represented by a vector of five
features, and then organized into a table. An illustration
of the resulting index is shown in Figure 3. The features
used are: R4: Recursive X-Y tree depth, Rs: Recursive X-Y
tree size (number of nodes), R,: Top-level standard vertical
X-Y cut elements (entire image), R,: Top-level standard
horizontal X-Y cut elements (entire image), and R,: Smaller
of maximum offsets in upper and lower contours. Entries in
the last level in the index are sorted by their vertical offset
value (R,).

For each query image (), we compute the same five
properties for document regions as described above, which
we similarly name Qg, Qs, @z, Qy, and Q,. We then recover
the set of candidates Cg from the index table using four
tolerances (a, 3,7,0: three integers and a floating-point
value), plus a filter to remove regions with an aspect ratio
differing significantly from the query. Given query (), an
indexed region R € Cg iff:

1) Recursive X-Y tree: Ry € Qata A Ry € Qs =0

2) Standard X-Y cuts: R, € Q, v A R, € Q, v

3) Contour offset: R, € Q, £

4) Aspect ratio: Q,/2 < R, <2Q,

A single value () is used to define the tolerance for top-
level X-Y cuts in both directions. Once the candidate set
C¢ has been defined, document pages containing candidates
are ranked in decreasing order of visual similarity with the
query. Each page containing a candidate region is scored by
the smallest DTW distance between the query and a page

R, = 3
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Figure 3. Querying the Document Region Index
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region, as described in Section III.

V. EXPERIMENT

Training and test document pages were taken from the
IEEE CVPR 2008 conference, converted from .pdf to .jpg
at 300 dpi. 400 pages were then randomly selected, with 200
for training (68 containing math), and 200 for testing (with
61 pages containing math). One expression is selected from
each page containing math. If a page contains more than
one ‘type’ of expression (with primarily horizontal, vertical,
or roughly equal X-Y cutting gaps), we manually extracted
one of the type with the fewest representatives. Nearly
all selected expressions were offset from the main text
(displayed). This expression set was then sampled randomly
to produce 20 training and 20 test queries. Test queries used
in the experiment are shown in Figure 4. The indexing and
retrieval algorithms were implemented in C++ using the
OpenCV library [24].

In the training phase, we select values for the search
tolerances using twenty expressions handwritten by ten
participants. We use a search over parameter values in order
to find a set of values that maximizes the average query
region recall (defined in Table I). We fixed the tolerance
for the number of regions in standard X-Y cuts (Q,, @y,
R, and R,) at v = 2. We then searched over the following
parameter ranges: « € {0,2,4,6,8}, 8 € {0,2,4,8,16} and
6 € {0.05,0.125,0.125,0.2}.

In the testing phase, we use the selected tolerances and
observe the retrieval performance for a distinct set of twenty
expressions handwritten by the same ten participants. For
comparison, we also observed retrieval performance for the
original query images from the test corpus. The metrics
used to assess performance are summarized in Table L
We measure retrieval accuracy using the top n candidates
returned (n = {1,5,10}). Note that our page and region
recall metrics are conservative: we record matches only
where the exact query region and page is returned in the top-
n results. This means we do not count matches to similar
or identical expressions at different locations on the same
page, or on a different page.

Participants evaluated retrieval results for their queries
using a web-based interface, a portion of which is of shown
in Figure 1. At the top of this web page, a 5-point Likert
scale is described, which characterizes the match between a
query and a candidate region: 1) No match, 2) Less than half
the query is matched, 3) Roughly half the query is matched,
4) More than half the query is matched, and 5) The query
is completely matched. Participants were able to click on
query and region images and view them in a separate tab of
their browser window.

A. Results

In the training phase, the average query region recall was
maximized at &« = 4, § = 16, and 6 = {0.2}. The index
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Figure 4. Test Queries Sampled from 200 Pages of the CVPR 2008 Proceedings

Table 1
PERFORMANCE METRICS. EXPERIMENTS WERE RUN ON AN IBM
THINKPAD (INTEL CORE2 DUO CPU T9600 (2.80GHz), 4GB RAM)
RUNNING THE 32-BIT WINDOWS XP OPERATING SYSTEM

Definition
Percentage of queries returning the page a
query was taken from

Metric
PTecall

Arecau  Maximum percentage area of a query over-
lapped by a top-n candidate
Part.  The highest participant rating (1-5) for a

candidate in the top-n matches

Table 1T
RETRIEVAL ACCURACY FOR TEST SET
(=4, 3=16, vy =2, § = 0.2). RESULTS ARE SHOWN FOR 20
QUERIES WRITTEN BY TEN PARTICIPANTS, ALONG WITH THE ORIGINAL
QUERY IMAGES (SEE FIGURE 4)

P’recall Arecall Part.
(%) (%) 1-5)
Top | o | u o | u o
HANDWRITTEN QUERY IMAGES
1386 11.7 | 267 133 | 206 0.63
51549 142|398 138 | 297 0.77
10 | 632 149 | 433 140 | 3.15 0.71
ORIGINAL QUERY IMAGES

1 90.0 30.0 | 4.65 0.08
5 90.0 300 | 483 0.05
10 90.0 30.0 | 483 0.05

for the 200 training pages contained 272,465 regions, with
2.77% of the regions were being selected as candidates on
average for the training query set. Tolerances for region
matching were set as (e =4, =16, y=2, 6§ =0.2).
Table II shows the mean and standard deviation for the
highest participant ratings for the top-1, top-5, and top-10
query results, along with the page and region match metrics
computed offline (these metrics are defined in Table I).
The average highest participant match rating for a top-10
candidate is 3.15, where 3 represents a candidate matching
roughly half the query; this corresponds well to the actual
average query region match (43.3%). All three accuracy
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metrics increase as we move from top-1 to top-10.

Retrieval of original queries was highly effective; for all
but two queries (queries 13 and 16), the original query region
was completely recovered. For queries 13 and 16, they
produced no match at all in the top-10 regions, producing
a mean A,ccqy of 90%, and leading to a high standard
deviation in recall for region matching (30%). The average
user ratings for the original queries are also very high. We
inspected the results, and found that query 13 did have a rank
3 candidate that was very similar, ‘(a% — b%)xy Though
there were a number of fractions returned for query 16 (7
of the 10 candidates returned), none of the candidates closely
matched.

Figure 5 illustrates box plots for the distributions of
participant ratings of query results. Median values are shown
as red horizontal lines, with the middle half of the values
in the boxed regions. Outliers are marked using ‘+’. For a
number of queries (numbers 2, 6, 7, 9, 15, 17, and 19),
we can see that almost all match ratings were 5’s, with
the exception of one or two outliers. Queries 11, 12, 13
and 20 had median ratings of 1 (no match), though there is
more variation in responses here than for the best recovered
queries. Eight queries have a median ranking of 1 or 2. Only
one query had a median ranking of 3 (query 3).

Across participants there is significant variation in the
ratings assigned to the best of the top-10 query results.
Participant 7 in particular provided a median ranking of 1.
Half of the participants have a median rating greater than 3
(i.e. indicating matches of more than 1/2 the query), one has
a median value of 3 (half the query), and four have ratings
less than 3, but with large variations in ratings other than
for participant 7.

For page-level retrieval rates, participant 7 had the lowest
top-10 rate (30.0%), while participant 3 had the highest
(85.0%), with an average retrieval rate of 63.2% across the
ten participants (o = 14.9%), as shown in Table II.
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Figure 5.

B. Discussion

The results confirm our hypothesis that it is possible
to recover math from typeset technical documents using
handwritten queries. However, the recursive X-Y cutting
method we are using can be brittle; in particular, for hand-
written expressions, the gaps between symbols may vary
significantly from a typeset expression, producing recursive
X-Y trees that greatly differ. The X-Y cutting performed
particularly poorly at producing cuts for one of our par-
ticipants (participant 7), who used a compact writing style
in which symbols overlapped a great deal (i.e. there was a
lot of kerning of symbols). We might try cutting at angles
other than 0 and 90°, and/or use different cutting termination
conditions, allowing connected components to be removed
when a cut cannot be made [25].

It is well-known that segmenting displayed/offset ex-
pressions is much easier than embedded expressions, and
additional work is needed to address this difficult prob-
lem. Strategies used for detecting embedded expressions in
document images include coarse classification of connected
components followed by region growing around detected
operators [26], and exploiting symbol n-grams in OCR
output for textlines with and without mathematical expres-
sions [27]; this n-gram information is paired with geometric
features and the number of occurrences for a set of common
mathematical operators (e.g. , ‘+’) in the context of
another region-growing algorithm. One might combine these
strategies with X-Y cutting to produce a hybrid detection
algorithm that can handle embedded expressions. Textline
n-grams could be augmented with n-grams for linearized
trees describing symbol layout in expressions vs. text (see
Watt [28]), and/or similar statistics characterizing spatial
arrangements of visual features in X-Y trees.

[
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VI. CONCLUSION

We have adapted word spotting techniques to the problem
of retrieving mathematical expressions in technical doc-
uments, using handwritten queries. Document regions of
potential interest are stored in an index organized around
X-Y tree properties. Candidates are retrieved by comparing
X-Y tree properties of a handwritten query to entries in
the index, after which candidates are ranked using Dynamic
Time Warping (DTW) of image columns, based on pixel
projection profiles for the upper and lower halves of each
query and page region image. An experiment was presented
in Section V, demonstrating that one might produce useful
top-10 results using this simple method.

We are curious whether our technique is language de-
pendent; for example, can this method work for technical
documents in Mandarin? It would also be worth investigating
whether our method can be easily adapted to detect other
objects such as chemical diagrams, tables, figures, and text
in technical documents.
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