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Abstract—Various software applications deal with analyz-
ing the textual content of screen captures. Interpreting these
images as text poses several challenges, relative to images
traditionally handled by optical character recognition (OCR)
engines. One such challenge is caused by text antialiasing, a
technique which blurs the edges of characters, to reduce
jagged appearance. This blurring changes the character
images according to context, and can sometimes fuse them
together. In this paper, we offer a low-cost method that can be
used as a preprocessing stage, prior to OCR. Our method
locates antialiased text in a screen image and segments it
into separate character images. Our proposed algorithm
significantly improves OCR results, particularly in images
with colored text of small font size, such as in graphic user
interface (GUI) screens.

Keywords-antialiasing; character segmentation; text detec-
tion;

I. INTRODUCTION

In many applications it is essential to recognize the con-
tent of computer screens. Translation is the most common
example. However, there are various additional business
domains where automatic operation of the user interface
is of interest. This automation requires the analysis of
the user interface screens [1]. Such services include:
automation of business processes that have traditionally
been performed by back office human operators; automatic
access to legacy systems for various purposes, such as
data migration; automatic visual software testing; and
automatic monitoring of human operators activities, etc.

In general, the automation of these processes can also
be performed without analyzing the user interface screens.
That is, by accessing the system’s internal structure.
However, in this approach a state-of-the-art software must
interface with legacy systems via a unique protocol (API)
or by instrumenting it, i.e., by modifying or inserting ”spy
code”. This approach is problematic for various reasons.
It requires knowledge of the legacy system’s internals and
the development of a system interface. Moreover, some
legacy systems are not accessible for editing, and may
not have APIs. In addition, instrumenting the system may
affect its behavior in unintended ways, possibly altering
the results of the process.

A visual approach, which directly access an application
through its user interface, can improve upon this prob-
lematic approach. Furthermore, a visual approach enables
operation using remote desktop protocols, in which only
the screen image is available. In this approach, an appli-
cation’s screen is captured and analyzed to recognize the
state of the user interface. This analysis usually involves
both image processing and OCR. The image processing
goal is to recognize graphical features, such as lines and

rectangles, in order to deduce the screen layout. The
OCR’s role is to extract text such as titles and text fields.

Screen images are acquired under seemingly ideal con-
ditions, with almost no noise, thereby appearing simple
to analyze. However, interpreting screen images poses
several challenges. One such challenge is caused by text
antialiasing (AA), which involves horizontal blurring of
the character images. While AA tends to improve text
readability for the human user [7], it causes severe prob-
lems for OCR systems. Especially in small font sizes, AA
characters tend to touch one another, making contour- and
projection-based segmentation methods inapplicable.

This paper addresses methods for locating AA text
within screen images and correctly segmenting the charac-
ters. We focus on sub-pixel AA, which is widely used in
both Windows an Linux platforms. Our only assumptions
are that characters in a single word are all of a single
color, and that the immediate background of the word
is quite uniform. These assumptions are valid in vest
majority of practical applications. Our goal is to reach
good segmentation results with very low latency.

Different approaches to handling AA small font sizes
have been suggested in previous work. In [2]–[4], a joint
segmentation and recognition approach is used. First, word
images are segmented (and over-segmented), and then the
segments are merged and classified. This requires many
classification operations (more than the number of actual
characters), and as such it is too expensive to be practical
for low latency needs. In [5], [6], a Hidden Markov Model
(HMM) is used for joint segmentation and recognition.
An HMM model is matched to features extracted from a
sliding window over the word image. Since this approach
requires the computation of HMM models for characters
of all font types and styles it is also too expensive to be
practical for our needs.

Contrary to the works just mentioned, our approach
utilizes the understanding of the process of AA text image
creation. We propose a low-cost procedure that can be
used as a preprocessing step prior to OCR. Usually the
performance of OCR engines deteriorates when operating
on images with only a few words and with small font
sizes. Moreover, when the text and background colors
share common RGB channels, such as blue text on black
background, OCR results are usually poor. As we demon-
strate in this paper, using our proposed method prior to
OCR considerably improves the results for these cases.

This paper is organized as follows. In Section II, we
describe the process of AA text image creation. We explain
our detection and segmentation algorithms in Section III,
and we present their results in Section IV. Section V
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concludes the work.

II. ANTIALIASED TEXT IMAGE CREATION

We start by explaining the conceptual steps for ren-
dering an AA text image. In practice, the rendering pro-
cess, such as [7]–[9], may not follow these exact steps.
However, these steps represent the concept behind the
process, and explain the graphical characteristics of AA
text images. In the first step, the program generating the
screen image computes the characters’ positions. Next, an
AA filter is applied on an image with black text on a
white background, according to the computed characters’
positions. Finally, text and background colors are applied.

Typical AA filters are horizontal low-pass filters. They
can be applied at full pixel or sub-pixel resolution, accord-
ing to system and program settings. In this work, we focus
on sub-pixel AA filtering, such as Microsoft ClearTypeTM

[7], [8], which is one of the most common sub-pixel AA
techniques in use today. Figure 1 is an example of black
text on a white background, with and without ClearType
AA.

(a) No antialiasing (b) Cleartype antialiasing

Figure 1. Black on white antialiasing example

Due to the AA process, a character image is affected
by the neighboring characters. In particular, as shown in
Figure 1, AA text may not contain background pixels
separating adjacent characters. As a result state-of-the-
art segmentation methods, used in classical OCR systems
[10], may fail.

Color is applied to the rendered characters using the
following formula:

𝑦 = 𝑇𝑐 +
𝐵𝑐 − 𝑇𝑐

255
𝑥 , 𝑐 ∈ {𝑟, 𝑔, 𝑏} (1)

in which 𝑦 is the final sub-pixel intensity, 𝑥 is the sub-pixel
intensity after the AA filtration and before the coloring,
𝑇 is the text color, and 𝐵 the background color. The
different color channels do not interact, so the intensity of
each sub-pixel is affected only by the text and background
color components that are associated with the sub-pixel
position. Adjacent sub-pixels are thus affected differently
by the coloring. Some examples for colored AA text are
presented in Figure 2.

(a) Red on white (b) Yellow on blue

Figure 2. Colored AA text examples

III. ANTIALIASED TEXT SEGMENTATION

The idea of our proposed AA text segmentation process
is to reverse the AA text creation precess. First, we detect
the location of the AA text. Then, for each detected area
we invert the color transformation in (1) and create a
grayscale, sub-pixel image. Finally, we perform character

segmentation, which is deconvolution of the AA filtration,
resulting in a binary black on white text image. The
connected components of this binary image are the desired
characters. Figure 3 summarizes the process. We describe
each of its steps in detail below.

Figure 3. Antialiased text segmentation - process scheme

A. Antialiased Text Detection

In this step, we identify the location of AA text on the
screen. Many different text detection schemes have been
proposed for different scenarios [11]. However, none of the
previous works address our specific problem. Furthermore,
such solutions do not differentiate between AA and non-
AA text, whereas some rendering technologies (e.g., Flex)
allow mixing different types of text in the same screen.

Our AA text detector is based on two stages: first, locat-
ing image areas with horizontal gradient and then checking
if the histogram properties of these areas correspond AA
text. To detect gradient areas, we transform the image into
grayscale, whereas the histogram test is preformed on each
color channel separately.

1) Gradient detection: A positive horizontal gradient
indicator 𝐷𝑝 is defined on a grayscale image 𝐼 by:

𝐷𝑝𝑖,𝑗 =

{
1 , 𝐼𝑖,𝑗−1 +Δ < 𝐼𝑖,𝑗 < 𝐼𝑖,𝑗+1 −Δ
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

This indicates pixels that are lighter than their neighbor
to the left and darker than their neighbor to the right,
by the predetermined threshold Δ. A negative horizontal
gradient indicator 𝐷𝑛 is similarly defined, and a general
horizontal gradient indicator is defined by 𝐷 = 𝐷𝑝 ∪𝐷𝑛.
An example of these indicators is presented in Figure 4.
The black pixels in image (b) are those indicated by 𝐷𝑛,
and the gray are those indicated by 𝐷𝑝.

(a) Input image (b) 𝐷𝑝 (gray) and 𝐷𝑛 (black)

Figure 4. Gradient indicators

Connected components of the general gradient 𝐷 are
then grouped into equivalence classes according to prox-
imity. In order to eliminate non-text gradient areas, equiv-
alence classes with either too few pixels or too large
bounding boxes are ignored. Furthermore, since we expect
gradients of opposite orientation on both sides of each
character, we also dismiss equivalence classes with only
one type of gradient. In general the threshold parameters
for the classification and elimination of equivalence classes
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are set according to the expected font size. However, as
can be seen in our simulations in Section IV, this setting
is robust and fits a large range of font sizes. We refer to
the bounding boxes of the remaining equivalence classes
as AA candidate areas, and test their histograms for AA
text properties.

2) Histogram test: In order to determine whether a
candidate area contains AA text, we test its histogram
in each color channel. It is easy to see that the his-
togram of AA text consists of a few (usually about seven)
nonzero bins, which are spread quite uniformly between
the background and text colors. When the background
color is not entirely uniform, instead of isolated nonzero
bins, the histogram consists of small groups of sequential
nonzero bins. Figure 5 introduces two typical histograms
of AA text, on uniform background and on approximately
uniform background. The histograms in this figure are of
the red channel of the presented text images.

(a) Uniform background (b) Approximately uniform

Figure 5. Histogram examples - red channel only

We divide the histogram into groups of sequential
nonzero bins. If this results in too many such groups,
or if they consists of to many bins, as compared to
preset thresholds, then the candidate area is declared as
not AA text. Moreover, in a histogram of AA text, the
group of sequential bins with the largest bin’s sum usually
corresponds to the background color, which is one of the
outermost nonzero bins. Therefore, we can also eliminate
candidate areas according to the location of the group with
the largest sum. However, in some noisy cases this claim
could be inexact; therefore, we use it only when we know
a priori that the image is of high color quality.

Figure 6 presents our AA detector performance on a
screen from a well known application. The detected areas
are marked by red rectangles. As shown in figure 6, all
AA text areas are detected, and only very few non-text
areas are falsely detected. These false detected areas are
the arrows in the navigation toolbar, which are very similar
to AA text. Even though the background of the buttons and
tab caption is not uniform, the AA text is still detected.

B. Color Transformation

In order to invert the color transformation in (1), we
first need to find the background and text colors and
tolerances. For that we look at the histogram of each color
channel, and calculate the sum of each three sequential
bins. We decrease the histogram resolution and recalculate
the sums, until the largest sum contains one of the exterior
nonzero bins. We set the background color according to
this exterior nonzero bin, and the text color according to

Figure 6. Antialiased text detection

the opposite exterior nonzero bin. We define the text color
tolerance according to the final histogram resolution. The
background color tolerance is set relative to the number
of nonzero bins surrounding the background color in the
histogram.

We now invert (1) to recover the sub-pixel grayscale
image and achieve decoloring. For this process, we refer
to three types of pixels in the colored image: background
pixels, text pixels, and intermediate pixels. A background
pixel is a pixel whose color is close to the background
color, in all channels, relative to the background color
tolerance. Similarly, A text pixel is defined according to
the proximity to the text color, relative to the text color
tolerance. The rest of the pixel are intermediate. We re-
cover the sub-pixel grayscale image as follows: sub-pixels
corresponding to background pixels in the colored image,
are set to 255; sub-pixels corresponding to text pixels
are set to 0; and sub-pixels corresponding to intermediate
pixels are set according to the inverted formula:

𝑥 =
255

𝐵𝑐 − 𝑇𝑐
(𝑦 − 𝑇𝑐) , 𝑐 ∈ {𝑟, 𝑔, 𝑏} (3)

in which 𝑥 is the sub-pixel intensity in the decolored
image, and 𝑦 is the intensity of the synonymous sub-pixel
in the colored image.

Exceptional cases occur when one or two color com-
ponents are identical in both text and background. In
those cases, (3) is irrelevant. When there is only one such
degenerate channel, the values of the corresponding sub-
pixels are set to the average of their immediate horizontal
neighbors. In case of two degenerate channels, the sub-
pixel resolution no longer adds any value. Therefore, the
decolored image is set according to the non-degenerate
channel alone.

Care must be taken with the spatial order of the color
channels (RGB or BGR). This order can be determined
by the direction of the gradients in the sub-pixel image.
We expect negative gradient on the left of each character
and positive on the right. We build the sub-pixel image
according to RGB, therefore if the order of the gradients
in the sub-pixel image is reversed, then we conclude that
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the original order was BGR and rearrange the sub-pixels
accordingly.

In Figure 7, we present three examples of decoloring.
On the top row, the background color is not uniform. In
the middle row, the text and background colors share the
same blue component, and on the bottom row, both the
blue and the green components are shared. Our algorithm
performs very well on all three examples.

Original images Decolored images

Figure 7. Decoloring examples

C. Character Segmentation

At this point, we have a grayscale image of AA black
text on white background, and we can finally turn to char-
acter segmentation. Our character segmentation approach
is in fact deconvolution of the AA filtration. This decon-
volution results in a binary black on white text image,
whose connected components correspond to the desired
characters. We refer to this binary image as the mask.

Standard deconvolution approaches, such as Weiner
filtering or more complex deconvolution schemes involv-
ing optimization of energy-functional, produce insufficient
results. These results are especially poor in small fonts or
when the text and background share one or two common
color components. Instead we suggest a very efficient
deconvolution approach. In this approach, we grow the
mask according to horizontal gradients in the image, as
explained below. This method can merge segments in
adjacent rows. In most cases this merge is desirable, since
the segments belong to the same character, but in some
cases characters can merge by mistake. However, we can
identify these cases, since the connection between the
characters is usually weak. In the segmentation algorithm,
we mark such suspicious connections as potential break-
points. Later, if the OCR does not recognize a whole
segment, we break it at the potential breakpoint and
recognize each partial segment separately.

The character segmentation algorithm consists of 5
stages:

1) Creating initial mask
2) Growing the mask
3) Finding potential breakpoints
4) Filling holes in the mask
5) Segmenting according to the mask’s connected com-

ponents

In stage 1, we initiate the mask to indicate both pixels,
which are below a threshold and local minima. We also
look for local maxima which are potential connections
between characters. If the gray level of a local maximum
is above a preset threshold, we conclude that it is a
connection point between characters, and set it to the
background level of 255. Otherwise, we assume that it is
inside a character and add it to the mask. However, in the

latter case, the local maximum can still be a connecting
point, so if the values of its surrounding pixels are not
low enough, we mark it as a potential breakpoint. We will
identify the rest of the potential breakpoints in stage 3.

In stage 2, we scan the image and mask twice: a left-
to-right scan and a right-to-left scan. Each pixel in the
scan is added to the mask only if it fulfills the following
requirements: its value is below a preset threshold; only
one of its immediate neighbors is on the mask; and
it is on a gradient, i.e., it is brighter or equal to its
masked neighbor and darker than its opposite neighbor.
An example of the evaluation in stage 2 is illustrated
in Figure 8. Even though the characters ’r’ and ’y’ are
connected by bright pixels in the sub-pixel image, they
are correctly separated in the mask.

(a) Sub-pixel resolution (b) Initial mask

(c) After mask growing

Figure 8. Mask growing

As shown in Figure 8, generally at this point, each
connected component in the mask represents a character.
However, in some cases, character masks can be con-
nected, therefore in stage 3 we mark potential breakpoints.
Figure 9 presents mask connections that we look for in
stage 3. If we find such a connection, and if its surrounding
on the sub-pixel image does not contain enough dark
pixels, then we mark it as a candidate breakpoint. In the
case of diagonal connection, as in the images on the left
of Figure 9, we also add pixels to the mask, so that this
connection holds when using four neighbors connectivity.

Figure 9. Mask connection types

Figure 10 presents an example for a potential breakpoint
and a connection of characters on the mask. The candidate
breakpoint is the red pixel in images (c) and (d). As shown
in the letter ’A’ in image (c), holes can occur in the mask-
growing process. In stage 4, we fill such holes to achieve
smooth character images. That is, we add to the mask all
pixels which have at least 7 out of 8 masked neighbors.

(a) Input image (b) Sub-pixel image

(c) After mask growing (d) After holes filling

Figure 10. Candidate breakpoint - in red

In stage 5, we complete the character segmentation
by dividing the mask into connected components, using
four neighbors connectivity. Each of these components
corresponds to a character or connected characters, usually
with breakpoints. However, even without AA, in some
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combinations of characters, font, and font size, characters
are fused together with no background pixels separating
them. In these cases, our algorithm cannot separate the
characters, and expensive joint segmentation-recognition
approaches must be applied.

IV. RESULTS

We first present the performance of our process on
a benchmark of real screen images, such as the one
presented in Figure 6 in Section III-A. These images are
screen captures taken from various applications both in
Windows and Linux, and contain AA text in various col-
ors, fonts, and font sizes. For all screens we used the same
parameters setting. The gradient threshold was Δ = 5. The
proximity threshold for the gradient equivalence classes
was 2, and the minimal number of pixels in an equivalence
class was 6. The maximal number of sequential nonzero
groups in the histograms was 11, and their maximal length
was 35. The threshold for initiating the mask for character
segmentation was 70.

The total number of AA words in the benchmark
was 628, out of which our detector successfully detected
99.2%. Our algorithm falsely detected a total of 35 non-
text areas in all images. The total number of character
segments in all the detected words was 3355, out of
which 99.8% were successfully segmented in the character
segmentation step. A character segment can contain more
than one character, since our segmentation cannot separate
characters that are connected even before the AA filtering.

Next, we assess the quality of our method by testing
the improvement it yields in character recognition, using
a leading OCR engine. We created synthetic images with
colored AA text, similar to Figure 11, with different colors
and font sizes. We used the font ’Arial’ for all the images,
and the font size varied from 10 to 14.

Figure 11. Example of a colored image

First we operated the OCR engine on these synthetic
images. These images are very difficult for OCR engines,
due to the short text, small size, and colors. Therefore
it produced extremely poor results. Next, we applied
our method on the synthetic images, using the same
parameters as before, and created new images with the
segmented characters in black on white. The OCR engine
was operated again on the new images. Table I presents the
OCR success rates, with and without our preprocessing,
for each color, averaged over the font sizes. In all cases,
our preprocessing significantly improved the results.

We also performed the same process on images with
much longer text of a bit larger font size, and when the
text and background do not share common color channels.
In these cases the OCR success rate was close to 100%
both with and without our preprocessing. That is, our
preprocessing did not deteriorate the OCR results when
they were good, and significantly improved them in the
difficult cases.

Table I
OCR SUCCESS RATE FOR VERY DIFFICULT CASES WITH AND

WITHOUT PREPROCESSING

V. CONCLUSION

We introduced a novel, low-cost procedure for the
detection and segmentation of sub-pixel AA text on screen
images. Using this procedure as a preprocessing stage
prior to OCR has low overhead and can extremely improve
OCR results, especially in cases of short and colored text
with small font size, such as GUI screens. Moreover, our
method is not limited to a specific platform, providing
good results on several platforms that use sub-pixel AA,
such as Windows and Linux. We are currently integrating
the proposed method with a fast OCR engine optimized
for screen images. Our future work will focus on adding an
adaptive element to the OCR engine, designed to handle
segmentation errors and connected characters.
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