
Document Recognition Without Strong Models

Henry S. Baird

Computer Science & Engineering Department
Lehigh University, Bethlehem, Pennsylvania U S A

www.cse.lehigh.edu/˜baird

Abstract—Can a high-performance document image recog-
nition system be built without detailed knowledge of the
application? Having benefited from the statistical machine-
learning revolution of the last twenty years, our architectures
rely less on hand-crafted special-case rules and more on models
trained on labeled-sample data sets. But urgent questions
remain. When we can’t collect (and label) enough real training
data, does it help to complement them with data synthesized
using generative models? Is it ever completely safe to rely on
synthetic data? If we can’t manage to train (or craft) a single
complete, near-perfect, application-specific “strong” model to
drive recognition, can we make progress by combining several
imperfect or incomplete “weak” models? Can recognition that
is carried out jointly over weak models perform optimally while
still running fast? Can a recognizer automatically pick a strong
model of its input? Must we always pre-train models for every
kind (“style”) of input expected, or can a recognizer adapt
to unknown styles? Can weak models adapt autonomously,
growing stronger and so driving accuracy higher, without
any human intervention? Can one model “criticize”—and
then proceed to correct—other models, even while it is being
criticized and corrected in turn by them? After twenty-five
years of research on these questions we have partial answers,
many in the affirmative: in addition to promising laboratory
demonstrations, we can take pride in successful applications.
I’ll illustrate the evolution of the state of the art with concrete
examples, and point out open problems.

(Based on work by and with T. Pavlidis, T. K. Ho,
D. Ittner, K. Thompson, G. Nagy, R. Haralick, T.
Hong, T. Kanungo, P. Chou, D. Lopresti, G. Kopec,
D. Bloomberg, A. Popat, T. Breuel, E. Barney Smith,
P. Sarkar, H. Veeramachaneni, J. Nonnemaker, and P.
Xiu.)
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I. INTRODUCTION

Theo Pavlidis advises us to “approach pattern recognition
as an engineering problem and try to solve important special
cases” rather than “looking for silver bullets that will solve
[...] general problems,” and he emphasizes “the need to
understand the nature of [each] problem and the desirability
of models” [1]. This rings true to me: I’ve often seen that the
more application-specific knowledge that is designed into
a system, the more accurate it becomes. Of course, such

modeling efforts can be engineering-intensive and even un-
affordable; sometimes we can’t find enough data; or our best
algorithms for exploiting models may be disappointingly
suboptimal, or run too slowly. So how closely to model a
given problem (say, recognizing printed text within a certain
family of document images) is a critical engineering issue.
I find it helpful to contrast “strong” and “weak” models:

∙ strong models: application-specific, an exact fit to the
problem, often formal and detailed; and

∙ weak models: generic, broadly applicable to other prob-
lems too, often informal and imprecise.

It’s no surprise to find that strong models support high
accuracy but are often expensive to implement, and weak
models tend to be cheaper but often yield lower accuracy.
Usually, I suspect, we feel forced to choose one over the
other—but I will argue here that we may be able to have
the best of both. A series of insights, often surprising to me
at the time, by dozens of researchers, accumulating for over
twenty-five years, make me optimistic that affordable weak
models can be made to combine, support, and even criticize
one another, adapting and becoming stronger and so driving
accuracy higher—all fully automatically. In short, this line
of research suggests how high-performance document image
recognition systems can be built with only small investments
in application-specific modeling.

II. MODELS IN DOCUMENT RECOGNITION

Models widely used to guide the recognition of text within
document images include of course at least:

∙ iconic models of shape and ideal image formation given
by writing systems and character (glyph) formation
rules, typeface artwork and handwriting styles;

∙ linguistic models of language such as morphology,
inflection, character and word 𝑛-gram statistics, dic-
tionaries, and syntax rules;

∙ segmentation models for how to break words into char-
acters and text lines into words (varying with writing
system and typeface);

∙ layout models of the physical (geometric) and logical
(functional) organization of page images (a higher level
of segmentation); and

∙ image quality models of distortions and defects arising
during printing and imaging.
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One would like to add pragmatic and semantic models, as
computational linguists do, but with rare exceptions (I dis-
cuss a couple below) the document recognition community
has not yet been able to do so.

The distinction between “strong” and “weak” models that
I make throughout this paper may be easier to appreciate—
I doubt that it can be precisely formalized—through some
examples:

∙ iconic: a model of exactly (& only) the typefaces
occurring in the input document, I call strongest; if of
different faces, or if it covers many irrelevant faces, I
call weaker.

∙ linguistic: a dictionary containing exactly the words
found in the input (a “perfect lexicon”), is strongest; a
dictionary that is a subset or superset of the document’s
word-list, is weaker.

∙ image quality: a model of just those the degradations
that affected the input is strongest; if of a range of
degradations any of which do not occur in the input,
weaker.

So, a “strong” model, in my usage1, is a close fit to
the particular input that the recognition system happens
to be working on: it is customized or specialized to it.
And a “weak” model is a poor fit, either because it is
incomplete or even over-complete (covering a wider range
of characteristics than are found in the input).

In this view, a model which is more versatile than it needs
to be for its present input is weak, even though that may
meet many of its design goals: for example, commercial
page readers must perform reasonably well on a wide range
of documents, so for any particular document, its default
models are inevitably weak. So strength depends on the
expected input, which may be as unbounded as all postal
code addresses, or as constrained as a single machine-printed
character.

Different degrees of strength can be found among com-
peting models for any given input (whether the input is long
or short, diverse or unvarying). I will argue below that the
stronger the model is for an input, the higher the accuracy
of the system running on that input is likely to be; but also
the higher the engineering cost of acquiring that model. And
consistent with this: relatively weak models are often easier
to acquire but yield lower accuracy.

III. ACQUIRING MODELS

Our R&D community has benefited greatly from the
statistical machine-learning revolution of the last twenty
years [2], [3], [4]: as a result we rely less often on hand-
crafting special-case rules than on learning models from
labeled samples (the reverse of the usual practice in the 80’s

1The terms “tight” and “loose” might have been more intuitive, and less
normative.

and much of the 90s). I will not talk (much) about hand-
crafted rule-based models because they are an unattractive
extreme case: they are not only costly to create, but difficult
(and eventually impossible) to improve as the expected input
changes.

There is of course a rich history of document image
recognition guided by probabilistic models of several types,
well typified by the literature on word recognition, e.g.
Decerbo, Natarajan et al [5], Breuel et al [6], Weinman
et al [7], Susuki et al [8], and Hamamura et al [9]. Most
of these assumed perfect knowledge of the models, and
focused principally on how to apply them to reduce errors.
But, interestingly, Susuki et al and Weinman et al attempted
to detect model imperfections, but not to adapt the models
themselves. I felt for a long time that there should be ways
not only to estimate error rates and even to identify candidate
errors, but then to correct these errors automatically; this was
an increasingly urgent open question through the 2000s.

IV. STRONG MODELS: HIGH-PERFORMING BUT COSTLY

At the risk of belaboring the obvious, I will discuss a
couple of cases which illustrate the point that strong models
tend to be costly to acquire but support high accuracy.

A. National Postal Code Readers

The most ambitious, and arguably the most successful,
document recognition R&D projects have all been national-
scale efforts to automate postal address reading. Three
projects with strikingly similar goals were launched in the
1980s: one in Germany, led by Dr. Jürgen Schürmann (AEG
Telefunken/ElectroCom); one in the U.S., led by Professor
Sargur Srihari (SUNY Buffalo); and one in Japan, led by
Dr. Hiromichi Fujisawa (Hitachi CRL). All three leaders
were simultaneously researchers and administrators; all were
deeply involved in ICDAR professional activities; their ca-
reers were all nearly consumed by their huge projects; and
all their projects were triumphantly successful. The huge
scale of these technical efforts is suggested by Srihari’s
record of advising 34 Ph.D. students and over 100 Masters
students, and publishing well over 300 refereed publications
(I omit selecting references).

We are fortunate that the staff of all three projects pub-
lished generously: we know a lot about their inventions and
engineering approaches. It is clear that although they pushed
machine learning as far as they could, a large fraction of
their effort was devoted to accumulating vast databases of
problem-specific data, and not simply “training data” for
classifiers but operational, data-flow, and financial informa-
tion provided by their partner postal services or acquired
painstakingly by the document recognition technical staff in
numerous site visits.

The models driving these systems were plainly extremely
costly to acquire, and also extremely strong since they were
made up of millions of application-specific details. The
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range of models they used was also unprecedentedly wide,
including all of the types I itemized above, including image
quality and layout models for perhaps the first time; one
could argue that in applying zipcode/state/city/street/number
constraints they were using semantic models. By all accounts
the combination of many strong models was essential to
success.

There is discussion in their literature of methods for
detecting special cases and then applying pre-trained models
particular to them: an early example of adaptation to the
input. But I do not find that models themselves were ever
adapted on-the-fly: they remained essentially constant. I
suspect that this is a consequence of the fact that the inputs—
single address images—were individually quite short, even
though the sequence of inputs was of course long and highly
variable.

B. Reading Chess Books

In another project depending crucially on strong models,
but at an opposite extreme in scale, in 1989 two Bell Labs
researchers built, in a few weeks, a custom system [10] to
read several volumes in the Chess Informant series [11]
which contain descriptions of chess games selected (and
meticulously proofread) by chess masters and published by
the International Chess Federation (FIDA).

My partner in this project was Ken Thompson, co-inventor
of Belle [12], the first chess-playing machine to earn an in-
ternational Master rating. He brought his existing algorithms
for checking the legality of chess moves, and specially
developed code to parse the regular-grammar syntax of
FIDA’s game descriptions. I contributed my experimental
multilingual page reader, which was already able to analyze
the single-column page layouts and which I quickly trained
on the non-ASCII characters of the (single) FIDA chess
typeface. We hand-crafted layout rules to extract game
descriptions from sequences of pages.

The books were poorly machine-printed (letterpress on
soft paper) which challenged the then state-of-the-art of lay-
out analysis and character and recognition and segmentation.
The results of recognition, including alternative interpreta-
tion of characters, were analyzed with the help of our layout
and syntactic models, and thus encoded games—sequences
of chess moves—were extracted. By applying knowledge of
the rules of chess (our “semantic” model), each move was
checked for legality directly in the context built up by prior
moves and indirectly through the consistency of later moves.
If after all these checks an interpretation remain illegal, legal
alternatives (that did not occur to OCR) were generated,
again by invoking semantic rules. The semantic analysis
was fully backtracking and unprotected against exponential
explosion, which in fact occurred but fortunately only rarely
(in which case we manually shut down and restarted on the
next game).

Of the games with no typographical errors, 97% were
assigned a complete legal interpretation (later verified man-
ually) for an effective success rate of 99.995% of charac-
ters correct on approximately one million characters (2850
games, 945 pages, four volumes). The character error rate
due to iconic (and segmentation) models was about 0.5%;
the syntactic model cut this only in half (to 0.2%); finally,
the semantic model drove it down to 0.005%: fifty errors
per million. The success rate on complete games was 42%
after the iconic model was applied, 76% after the syntactic
model, and 97% after the semantic model. Ken felt that
correctly reading 97% of the games fully justified his effort,
and he put many more volumes through the system and
added their hundreds of games, not otherwise available in
machine-readble form, to Belle’s “opening book.”

Of course Ken’s syntactic and semantic models were
strongly specialized to these books, and required highly
skilled engineering that would rarely be available or af-
fordable; my iconic model was also strong (and reasonably
accurate) and required a few days of skilled semi-manual
training; but my layout and segmentation models were weak
and generic (and yet worked fine without modification).

Prior to this, OCR linguistic models had been applied to
short passages, often a single word at a time. The tractability,
compared to natural language, of the syntax and semantics
of chess offered us an early opportunity to assess the value
of high-level models on long passages, here of the hundreds
of characters making up each complete game. The fact that
this semantic model operated on long passages struck me as
the essential reason for the astonishing 100-fold reduction
in character error rate compared to iconic recognition alone.
This never-forgotten lesson would bear different, and less
narrowly specialized, fruit twenty years later in whole-
book recognition research with at Lehigh University with
Pingping Xiu.

V. GENERATIVE MODELS

Pattern recognition professionals often suspect that the
classifier trained on the most data wins [13], [14], [15]. A
serious chronic obstacle to the broad application of machine
learning remains the difficulty or impossibility of collecting
and labeling large representative data sets of real data to
drive training. An appealing circumvention is to complement
real data (or supply their total lack) with synthetic data using
generative models.

Among the earliest of these were hand-crafted parameter-
ized models of bilevel and grey-level degradations of images
of text (characters, then words, and finally whole pages)
and their implementation as pseudorandom generators. I first
heard this proposed by Theo Pavlidis in about 1984, and by
the late 80’s I had convinced myself, in experiments with
a ten-parameter model [16], that it offered synthetic data
of quality good enough to systematically expand the range
of cases subject to automatic training. This enabled four
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engineers (Theo, Simon Kahan, Reid Fossey, and myself)
to build a high-performance 100-font page reader in a few
months [17][18].

A 100-font classifier—trained on many fonts and ready
to attempt recognition on any of them, even when the fonts
are mixed together— is admirably versatile, but if the input
happens to be in only a single font, I would say this system
is relying on a weak model. George Nagy and I trained 100
distinct classifiers[19], each on a different single font: they
had strong models, of course, when run on text only in their
custom font. We then tested the 101 classifiers: the 100-font
classifier, run on character-images from all 100 fonts, had an
average error rate of 4.2%; when each single-font classifier
was run on its own font, the error rate (averaged over all
100 tests) fell to 0.81%, an improvement of a factor of 5.2.
Naturally we had expected specialized systems to excel on
their specialities, but I was amazed at the large improvement:
in those days (perhaps still today) an OCR engineer would
be proud of an improvement of a factor of only 1.1 (a 10%
absolute improvement). This was another striking revelation
of the power of strong models.

An important open problem in the 1990s, especially for
degradation models, was how to assess their accuracy (their
“realism”). Tapas Kanungo [20] made important progress in
his dissertation under Robert Haralick with a well-founded
statistical method for evaluating such models using bootstrap
tests on sets of image samples. He applied it to find values
of the free parameters of such a model to best match a
collection of real images. Unexpectedly, his test was also
exquisitely sensitive, capable of discriminations finer than
untrained human eyes can manage [21].

Li et al [22] validated image degradation models using
knowledge of OCR errors, but depended on ground-truth
being known.

Elisa Barney Smith et al investigated methods [23], [24],
[25] for estimating the parameters (including blurring and
thresholding) of image-quality models from real images of
known characters. Aside from her work, as far as I know,
no model-validation test has yet been used to compare
competing image quality models with collections of real text
images to determine which is the best: this remains a long-
standing open question.

A. When is Synthetic Data Safe?

Synthetic training data is now used in our community
widely and almost routinely. But unrepresentative data, even
data that is only a little too degraded, can yield inaccurate
classifiers, so it is reasonable to ask when it is safe. Jean
Nonnemaker [26] has pointed out that synthesis can be
carried out in at least three natural “spaces” of images:
sample space (the set of all real samples as they are orig-
inally described), parameter (or, generator) space (vectors
of values determining how samples are generated), and
finally, feature space (vectors by numerical feature values).

Synthetic data can be (and has been) generated in all three
spaces: in sample space by combining parts of samples or
averaging; in parameter space by varying the parameters that
control generation; and in feature space by perturbing feature
values. In her dissertation she explored the parameter spaces
of two generative models: an image degradation model [16];
and a parameterized model of typeface design (adapted from
Knuth’s Metafont system). She showed how to generate pre-
viously unknown (but still legible) typefaces by interpolation
between well-known typefaces in the Metafont parameter
space, and then, within these synthetic typefaces, degraded
character images were generated, also by interpolation be-
tween legible images, in the image-degradation parameter
space.

In this rich two-tier synthesis, of both typefaces and
character images, Nonnemaker found, in large-scale system-
atic tests, that training on synthetic data that results from
interpolation between or among real images in parameter
spaces is safe: that is, classifiers trained on such synthetic
samples never performed worse on real samples. Further-
more, classifiers trained on synthetic data often improved
(about one third of the time) in accuracy on never-before-
seen synthetic cases: that is, such training was effective in
extending the domain of competence of the classifiers to
include cases for which real typefaces and real images would
be unavailable. To summarize: training on synthetic data
which is generated by interpolation (between and among)
real samples is both safe and effective, and over both
typeface and image quality variations.

More work of this sort is clearly needed, in order to supply
a firmer foundation for the safe use of data generated by
models.

B. Synthetic Data & Human Interactive Proofs

Methods for generating synthetic images of text across
a wide range of image defects has found a serendipitous
use. In 1997 Andrei Broder and his colleagues [27], then
at the DEC Systems Research Center, developed a scheme
to block the abusive automatic submission of URLs to the
AltaVista web-site. Their approach was to present a potential
user with an image of printed text formed specially so that
machine vision (OCR) systems could not read it but humans
could. In September 2000, Udi Manber, Chief Scientist at
Yahoo!, challenged Prof. Manuel Blum and his students [28]
at The School for Computer Science at Carnegie Mellon
University to design an “easy to use reverse Turing test” that
would block ‘bots’ (computer programs) from registering
for services including chat rooms, mail, briefcases, etc. In
January 2002, Prof. Blum and I ran, at PARC, the first
workshop on ‘human interactive proofs’ (HIPs), defined as
“challenge/response protocols which allow a human to be
authenticated as a member of a given group: as human (vs.
machine), as a particular individual (vs. everyone else), as
an adult (vs. a child), etc.”
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Richard Fateman and I built the PessimalPrint [29] HIP
using an image degradation model. Within its generator
parameter space, it is possible to locate the margins of good
performance of any OCR system by systematic testing on
synthetic data. Psychophysical testing on human subjects
similarly maps their capabilities. Wherever this reveals a
gap in ability—where OCR systems fail but human readers
succeed—an unbounded series of word images can then be
generated to serve as HIPs.

All large-scale commercial uses of HIPs still exploit the
gap in ability between human and machine vision systems
in reading images of text, and synthetic images containing
pseudorandomly generated defects (of a wide variety) are
key to many of them.

Systematic testing using generative models have the po-
tential, still mostly untapped, to reveal the margins of
good performance of many document recognition systems.
Knowing exactly where weaknesses lie hidden is surely
a good thing: for example, it may be possible to repair
weaknesses by generating training data in and around the
detected margins of failure; a stab at this by Tin Kam Ho
and myself [30] was too brief to be conclusive: it remains
a promising open problem.

VI. AUTOMATICALLY ADAPTIVE MODELS

Research into document image analysis over the last
two decades has demonstrated that automatically adaptive
recognition algorithms can, in some circumstances, improve
accuracy substantially without human intervention.

Tao Hong [31] showed that in books printed in a single
typeface, an adaptation strategy that alternates between ap-
plying “visual constraints” and “linguistic constraints”, can
reduce errors. This was perhaps the first adaptive recognition
technique to exploit both iconic and linguistic models on
a roughly equal basis, and to operate on long (multi-
page) passages: my imagination was strongly excited by the
thought of alternating between two distinct models (iconic
and linguistic) within long passages; this memory was one
of the driver’s for Xiu’s and my recent work on whole-book
recognition.

Nagy, Shelton, and I [32][19] showed that a character
classifier trained on many typefaces can “self-correct” when
adapting to text in a single unnamed typeface. The method
was risky: run a classifier known to be imperfect but then
accept its classifications as true and, using them, retrain. I
confess it felt also sinful, since training on poisoned data
violated core precepts of supervised classification. So we
were astonished at how safe and effective it turned out to
be: experiments on 6.4 million pseudo-randomly distorted
character images showed improvement on 95 out of 100
typefaces. Character error rate fell by a factor of 2.5,
averaged over all 100 typefaces on an alphabet of 80 ASCII
characters at body-text size and quality. The self-correcting
method complements, and does not hinder, other methods for

improving accuracy including the application of linguistic
models.

While these results were exciting and suggestive, they
were merely empirical, lacking any analytical insight into
the causes of the improvements.

A. Style-Conscious Recognition

Prateek Sarkar’s dissertation [33] gave the first rigorous
analysis of classifiers able to exploit uniformity in the input
to enhance recognition. Sarkar’s theoretical framework is ad-
mirably clear and compelling and his methods are potentially
widely applicable (far beyond document image recognition).
Sarkar, Nagy, and Veeramachaneni [34], [35], [36] went
on to investigate a family of “style-conscious” algorithms
able to improve recognition on “isogenous” documents—
that is, documents produced in a uniform manner so that they
contain only a few of the many typefaces, image qualities,
and other variations that can occur in diverse collections.
They also showed (to my surprise) that it is not necessary
to train on styles in order to reap some (but typically slight)
benefit.

Isogeny and exploitable uniformities turn out to be
widespread and highly varied, potentially embracing not
only typefaces, handwriting styles, and image qualities, but
languages and domains of discourse.

Style consistency has usually been applied to “fields” of
up to a dozen or so characters, but on longer passages it
performs nearly identically to simple style-first recognition
[37].

A key challenge of adaptive recognition remained: how
to proceed when it is known (or presumed) that the input
document is isogenous, but the particular models which
generated it are not known.

VII. JOINT RECOGNITION OVER MULTIPLE MODELS

If we can’t manage to craft (or train) a single complete,
near-perfect “strong” model to drive recognition, can we
make progress by combining several imperfect or incomplete
“weak” models?

A. Document Image Decoding

PARC’s Document Image Decoding (DID) technology
finds a sequence of characters that best explains an observed
document image in terms of models of printing, scanning,
and language. It is based on a communication-systems
interpretation that views the generation of a printed page
in terms of transitioning through a probabilistic finite-state
machine, or Markov model. In this iconic model of the
image source, a mark or template (typically corresponding
to an individual character) is printed upon every state
transition, and the current printing location on the page is
then advanced by the corresponding ’set-width’ (actually, a
2-D displacement vector; thus the iconic and segmentation
models are integrated). The observed image is viewed as a
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possibly degraded version of the ideal image produced by
the Markov model.

The task performed in recognition is to work backwards
from the observed image to reason about what path must
have been followed through the Markov source, and what the
degradation must have been, and the language, to produce
that image. A variant of dynamic programming was used to
accomplish this in the original work on DID [38], under the
assumption that the Markov source is amenable to causal
processing via scheduling. In later work ([39], [40], [41],
[42], [43], [44], [45], [46], [47], [48]), this assumption was
maintained but its significance somewhat obviated by an
independent restriction to individual text lines which are
one-dimensional and hence trivially schedulable: this line-
by-line decoder was fully implemented.

Several models must be specified for DID to work on any
particular document. Three of these are learned from training
data: (1) iconic, the shapes and identities of the character
templates printed by the Markov source, (2) image quality,
the manner in which the ideal image is corrupted on the
way to observation, and (3) linguistic, a prior description
of which recognized strings are valid in the given language.
One remaining DID model is structural: these are the states
and transitions in the Markov model itself; in the special
case of an isolated text-line decoder this is a simple, fixed
three-state Markov model (in omore complicated cases, this
model would be specified manually).

Given training images, learning the iconic model becomes
essentially a character segmentation problem, which was
addressed by a graph-theoretic independent-set formulation
[40], an iterative procedure [41], and finally as an instance
of the expectation-maximization algorithm [41] [42].

The second modeling problem, learning image quality
(or, degradation parameters) was initially addressed using
a binary asymmetric pixel-flip model [38], then general-
ized to allow different pixel-flip probabilities depending on
position within the template [43], and finally to grayscale
observations with the possibility of spatial dependence in
the deterministic component of the degradation [39].

For the third class of models needed by DID, the linguistic
model, a unigram (simple letter frequency) model was
initially used [38]; this was then extended to fixed [44] and
variable [45] character 𝑛-grams (statistical characterization
in terms of groups of 𝑛 adjacent characters). When inte-
grating an 𝑛-gram language model into Viterbi template-
matching search, conventional dynamic programming is no
longer feasible due to a potentially exponential blow-up
in the search space. In response to this problem PARC
researchers invented a procedure (iterated complete path
optimization) to find an optimal path that is, on average,
far faster [45] and compared it with an approximate (sub-
optimal) technique that is often faster still [46].

Large reductions (up to a factor of forty) in runtime were
thus realized without compromising optimality by iterative

decoding using heuristic upper bounds and segmental dy-
namic programming [47], and judicious subsampling [48].

DID research first emphasized retargeting: that is, su-
pervised training of decoders, requiring manual effort to
prepare training images and synchronized ground truth [41].
Later, PARC reduced the manual effort of DID training sig-
nificantly by obviating manual pre-segmentation of images
of text lines into words or characters during both training
and testing [42]. They also showed that DID decoders are
trainable to high accuracy across a wide range of explicitly
parameterized image degradations [49].

Some DID models, including the iconic model are, in our
sense, necessarily strong, but can be learned automatically.
Other models are arguably quite weak: the character 𝑛-gram
models are seldom perfect for any given input; and the bit-
flip image-quality model is simplistic; but these also can be
inferred automatically from corpora. Therefore it interested
me that when this mix of strong and weak models were
optimized jointly during recognition, accuracy improved dra-
matically [44], [49]; this may be connected to the remarkable
fact that joint recognition in DID was provably optimal
in a precise and realistic sense. It was also striking that
joint optimization over multiple models could be carried out
rapidly. A fascinating set of open problems is suggested by
the evolution of the DID technology. Each extension, from
one to two to three models, and to linguistic models of
increasing complexity, has maintained provable optimality
and high speed, while at each step achieved significantly
higher accuracy. This consistent improvement seems to me
to result largely from the invention of the iterated complete
path algorithm: why stop at three models?—I suspect that it
can be extended to higher orders of linguistic models such
as word 𝑛-gram occurrence models, and—who knows—
perhaps pragmatic and semantic models. This is deserves
several Ph.D. dissertations.

A general characteristic of the document image recogni-
tion literature on joint optimization over multiple models is
its restriction to extremely short passages: usually, isolated
characters; occasionally, isolated words; and only rarely
passages longer than a single word. While DID technology
successfully operated on images of entire text lines, the text
lines were processed independently (starting afresh on each)
for the most part, and never across page boundaries.

B. Deciphering OCR

The literature on “deciphering” OCR has shown re-
peatedly [50][51][52][53][54][55] that clustering character
images (in which the iconic model is weak, merely an
image-similarity metric), together with pruning by linguistic
constraints, can improve recognition. While deciphering-
OCR algorithms operate on long passages and use strong
linguistic models, they have not, as far as I can tell, adapted
their linguistic models on the fly.
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VIII. AUTOMATICALLY CHOOSING A STRONG MODEL

Can a recognizer automatically pick or construct a strong
model of its input? I’ll describe two approaches: if we pre-
train models for each style of inputs that might be seen
(taken together this makes for a weak initial model), it can be
possible to choose the strongest model for any given input;
and in a system driven by several weak models, they can be
made to correct one another and so strengthen all of them.

A. Selecting Among Pre-trained Strong Models

Prateek Sarkar, Dan Lopresti, and myself investigated
high-accuracy, fully automatic recognition of machine
printed text across a wide range of challenging image qual-
ities, without requiring manual intervention or supervised
training [56]. This approach was made possible by two
properties of the DID technology: (1) it is trainable for high
accuracy across a wide range of explicitly parameterized
image degradations; and (2) decoders for arbitrary parameter
settings can thus be generated automatically. Large-scale
experiments on synthetic images showed that, when many
pre-trained decoders are applied in parallel to an input image
of unknown but fixed image quality, the decoder that yields
the highest accuracy is often the one that exhibits the highest
DID posterior ‘Viterbi score’ which is computed as a side-
effect of the decoding process. By choosing this decoder,
the need for manual document–specific training is eliminated
with little or no loss in accuracy. When implemented naively,
in a brute–force manner, decoder banks can be computation-
ally intensive: it is an open question how their cost may be
reduced with no loss of versatility, automation, or accuracy.

B. Mutually Correcting Models

Can a recognition algorithm detect that it is operating on
a type of document different from those that its models
were trained on? That is, can it judge the strength of its
models without knowing ground-truth? Can an unsupervised
algorithm which changes its models on the fly know whether
those changes will be advantageous or not?

Pingping Xiu and I, believing that model adaptation oper-
ating on long passages might shed light on these questions,
explored “whole-book” recognition [57], a strategy that
operates on the complete set of a book’s page images using
automatic adaptation to improve accuracy.

Nagy and Sarkar’s work sensitized us to the implications
of the fact that, within long isogenous books, identical (or
highly similar) character images occur multiple times and
therefore in a variety of word contexts. Thus, a defect in the
iconic model (say, the wrong shape for a particular character)
can cause multiple errors on instances of this character, and
so damage the recognition of more than one word. Similarly,
defects in the linguistic model (say, a word not in the lexicon
but occurring in the document) can damage more than one
character’s interpretations. Models’ errors affect one another:
can these effects be separated?

Let us assume that the models which implicitly generated
all the images of an isogenous book include at least (1) an
iconic (character-image formation) model and (2) a linguistic
(word-occurrence) model and that recognition is performed
jointly with respect to both models. Then we expect that
most errors will be due to imperfections in one or both of the
models. If a particular error is caused by one model but not
the other, then it may provide evidence of a “disagreement”
between the models.

We discovered that such disagreements are real and can be
detected automatically (using cross entropy [58])—further,
these disagreements, when summed over long passages
(of many pages), correlate significantly with character and
word error rates. Thus disagreement, a statistic which the
algorithm can estimate, turns out to be a reliable proxy for
error rate, which in an unsupervised setting is of course
unavailable to the algorithm. Furthermore disagreements can
help identify candidates for model corrections at both the
character and word levels [59]. Some model corrections will
reduce the error rate over the whole book (while others
won’t), and these successful corrections can be identified
with a useful degree of confidence by comparing model
disagreements, summed across the whole book, before and
after the correction is applied. If implemented naively, the
algorithm runs in time quadratic in the length of the book;
but random subsampling and caching techniques speed it up
by two orders of magnitude with negligible loss of accuracy
[60]. The longer the passage operated on by the algorithm,
the more reliable this adaptation policy becomes, and the
lower the error rate achieved. Experiments on passages up
to one hundred and eighty pages long show that when a
candidate model adaptation reduces whole-book disagree-
ment, it is also likely to correct recognition errors [61].
error rates are driven down by nearly an order of magnitude
fully automatically without supervision (or indeed absent
any user intervention or interaction). Improvement is nearly
monotonic, and asymptotic accuracy is stable, even over
extremely long runs. Best results occur when the iconic and
linguistic models mutually correct one another [62]: flawed
critics locked in a virtuous embrace.

The method requires little application-specific engineer-
ing: it expects to be initialized with approximate iconic and
linguistic models—derived from (generally errorful) OCR
results and (generally imperfect) dictionaries—and then,
guided entirely by evidence internal to its evolving test set,
corrects the models which, in turn, yields higher recognition
accuracy. Whole-book recognition has potential applications
in digital libraries as a safe unsupervised anytime algorithm.

It is an open question whether mutual correction can
be extended to more than two models: it’s technically
challenging to find statistics which allow criticism among
models in an even-handed manner, without favoring (trusting
the accuracy of) one model over the others. If however this is
possible—if, say, image quality, character 𝑛-gram, or layout
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models can be added—there are good reasons, as we have
noted earlier, to expect that corrections will be more reliable
and improvement greater [63].

IX. CONCLUSION

Drawing on over twenty-five years of research by dozens
of researchers, I have pieced together the case that high-
performance document image recognition systems can be
built without detailed knowledge of the application, starting
with models to drive recognition which are what I have
termed “weak” (incomplete or generic) but which are often
easy to acquire. The distinction between weak and strong
models, which I use to unify my argument, shifts attention
away from our customary concerns with engineering cost,
accuracy, and speed, and towards the degree of “fit” of
a variety of models (on which cost, accuracy, and speed
depend) to the particular input the system is attempting to
recognize.

Statistical machine learning allows us to train models
from real labeled-sample data which, if they are too few,
can be complemented or even completely supplied by sam-
ples synthesized by hand-crafted and statistically calibrated
generative models. Training on synthetic data appears to be
safe and effective when it is carried out by interpolation (in
generator parameter space) between or among real data sam-
ples. In addition, synthetic data can map the margins of good
performance and perhaps guide automatic repair of failure
regions. If we can’t afford to acquire complete application-
specific “strong” models, we can make significant progress
by combining several weak models, the more the better. Joint
recognition over weak models can be proved optimal and
still run fast. A recognizer can automatically pick a strong
model of its input and thus adapt to it and improve, without
supervision. We do not always need to pre-train models for
every style of input the system may encounter: it can adapt
to unknown styles. In this way models that start out weak
can grow stronger and so drive accuracy higher, without
any human intervention. In a system driven by more than
one initially weak model, each of the models can criticize
and correct the other models—without knowledge of ground
truth—even while it is being criticized and corrected by them
at the same time; for this to work, it seems to be necessary
to operate over long passages repeatedly within the inner-
loop of the recognition process. Improvements by mutual
correction can be nearly monotonic and highly stable over
extremely long runs, and so they support anytime recognition
systems that can reliably run unattended.

Taken together, these research results suggest a model-
intensive engineering methodology: start with manageably
small collections of real training data, amplify them with
synthetic data using generative models, train weak mod-
els, jointly optimize recognition over several weak models,
and adapt (and so strengthen) models by style-conscious
recognition applied to short passages and mutual correction

over long passages. In this way, high-performance document
image recognition systems can be built with only small up-
front investments in application-specific modeling.

Such engineering techniques promise to extend the range
of affordable and highly accurate document recognition
systems.
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