2011 International Conference on Document Analysis and Recognition

An On-Line Arabic Handwriting Recognition System

Based on a new On-line Graphemes Segmentation Technique

Hesham M. Eraqi, Sherif Abdel Azeem
Electronics Engineering Department
The American University in Cairo (AUC)
Cairo, Egypt
hesham.eraqi@gmail.com, shazeem@aucegypt.edu

Abstract— In this paper we present a new system for on-line
Arabic handwriting recognition based on a new on-line
graphemes segmentation technique that depends on the local
writing direction. Baseline detection, delayed strokes detection,
PAW (Piece of Arabic Word) main stroke construction, and
characters construction from the basic graphemes are issues
that are addressed in this paper. Experiments are performed
on the ADAB-database to validate the system and the
segmentation method. The results show a significant
improvement in terms of the contribution of segmentation
errors to the overall system errors while providing high
performance with a simple on-line feature extraction.

Keywords- on-line handwriting; baseline detection;
graphemes segmentation
I. INTRODUCTION

Arabic writing is cursive for both of its printed and
handwritten forms, which require the segmentation of words
into characters or part of characters, i.e. graphemes, either
explicitly or implicitly like approach of using the Hidden
Markov Mode HMM. The shape of the character varies
according to its position in the word. Besides that, some
characters share the same primary part and distinguished
from each other by the secondary part which we call in this
paper “delayed strokes”. Moreover, some characters,
especially in Arabic handwriting, may overlap with their
neighboring characters forming what is called “ligature”. In
Arabic writing, each word consists of at least one PAW,
while each PAW is composed of some connected characters
(at least one character). More details about Arabic writing
characteristics can be found in [1].

The above features, besides other characteristics of
Arabic language, make Arabic recognition more difficult
than other languages such as Latin or Chinese [4,8] and show
the importance of the segmentation process role in the
system, segmentation errors may produce character rejection
and add more confusion in the recognition phase.

In on-line handwriting systems, the trace of the pen is
used for the classification and recognition of the input
information, which provides us with temporal features that
are used to infer the dynamics of the writing in the different
phases of the system.

In this paper, we introduce an on-Line Arabic
handwriting recognition system based on a new explicit

1520-5363/11 $26.00 © 2011 IEEE
DOI 10.1109/ICDAR.2011.90

409

graphemes segmentation technique. In the coming sections,
we are going to explore the different stages of the system,
discussing the challenges of each stage and presenting our
approaches of solving it. Finally, we will report our testing
results based on the on-line ADAB-database [5].

II. PRE-PROCESSING

A. Smoothing

In order to remove the jaggedness of the contour
resulting from the handwriting irregularity and the
imperfection caused by the acquisition device, every point
P, = [x(t),y(t)] in the trajectory is replaced according to

the following equation:
n n

P, = z ath+k'Z a, =1

k=-n k=-n

For each point to be the mean value of itself and its (2n)
neighbors, a;, = (2n + 1)™1. Smoothing is important for
proper segmentation and has improved the final recognition
rate.

B. Resampling

It’s important to have an equal points’ density along the
writing contour for proper segmentation as the proposed
segmentation algorithm is based on the local writing
direction and independent of the speed of writing. Besides,
the SVM classifier used in the system needs to have a
constant number-of-points grapheme strokes for a constant-
length feature vectors [6]. Generally, resampling may be
used to reduce the size of the data samples and speed up the
recognition time [8].

A writing speed normalization (resampling) algorithm
based on trace segmentation method explained in [8], is
used to redistribute data points (originally sampled in equal
time intervals) to enforce even spacing (resampling
distance) between them. In order to have a constant number
of points for every stroke, a new resampling distance should
be calculated for each stroke, where:

Stroke contour length

Resampling distance =
pung Target number of points

IEEE
computer
® psouety

For the proposed segmentation technique to segment
properly, points of every stroke should be equidistant,
regardless how many points are produced in each stroke
(Figure 1). After segmentation, each grapheme is resampled
to get a constant number of points to have a constant-length

feature vectors.
‘—U
E]

Smoothing and Resampling Effect for Segmentation

.

Figure 1.

C. Baseline Detection

The following two stages in pre-processing, delayed
strokes detection and PAW stroke construction, depend on
the global baseline of the word under test. The diacritics
represented in delayed strokes, word slope, and words that
are constructed from more than one PAW are the main
problems of detecting the Arabic handwriting baseline [2].
Baseline detection in our system is based on horizontal
projection method, which is commonly used by the OCR
researchers to detect Arabic baseline [9]. The following
steps summarize the algorithm:

1- Construct an offline bounded image by interpolating every
stroke of the word.

Remove some of the delayed strokes that are easy to detect by
their small area, constant writing direction, and having writing
above or below it.

Increase the thickness of every pixel vertically (around 5
pixels) as shown in Figure 2. This increases the chance that

different PAWs baselines meet in the same vertical position.

2.

Figure 2.

Increasing writing thickness vertically (zoomed)

Arbitrary baseline is selected according to the horizontal
projection histogram maximum value as shown in Figure 3.
Search the histogram for a value higher than 80% of
maximum projection value within the narrow area under the
arbitrary baseline (20% under it),

IF it exists, this vertical position is selected to be the arbitrary
baseline instead.

This step solves the problem caused by some Arabic letters
that have an upper horizontal junction that may result into a
histogram peak (Figure 3(A)), as like letters “~= and “=-".
IF the arbitrary baseline is within the image upper part (upper
20% part of the image),

410

THEN, search the other part of the image for a projection
value higher than 60% of the current baseline projection
value. If it exists, this vertical position is selected to be the
baseline.

This problem happens with the letter “<” (Figure 3(B)).

ELSE IF the arbitrary baseline is within the image lower part
(lowest 40% of the image),

THEN, search the other part of the image for a projection
higher than 60% of the current baseline projection value. If it
exists, this vertical position is selected to be the baseline.

This problem happens with some of the Arabic letters like
“>” and “¢” (Figure 3(C)).

IF step 6 didn’t select a new baseline,

THEN, the arbitrary baseline is selected to be the baseline.

?“
o

2500

-

n n n n
500 1000 1500 2000

Figure 3. Baseline detection problems using horizontal projection

histogram for the Arabic word “Aasill S 0

D. Delayed Strokes Detection

The processes of segmentation and graphemes
classification are done on the main part of the word, so
delayed strokes (secondary parts including diacritics) should
be distinguished and excluded to be used later on the
character construction phase. Figure 4 shows some
examples of what we call delayed strokes, in red.

. c
59 o J0
I é\)ﬁ%)\ﬁ

Figure 4. Delayed Strokes

-

Delayed strokes are detected and each delayed stroke is
assigned to its main stroke using a holistic approach that is
based on a set of Boolean expressions describing the stroke
dimensions, shape, number of points, trace duration, and the
vertical distance from baseline. Besides the associated main
stroke relative area and position to the delayed stroke.

E. PAW Main Stroke Construction

In Arabic, there are a big number of classes (graphemes)
that represent 28 characters, where the shape of each
character is context sensitive and may have up to 4 shapes
according to its position within the word. However, this big
number of classes can be significantly reduced by:

(1) Isolation of the delayed strokes of the characters and
recognizing them separately.

(2) Categorizing the classes according to the grapheme
position within the PAW.

Baseline

In our system, we have 4 sets of classes; beginning,
middle, end, and isolated graphemes as shown in Table I.
Grouping the PAW main strokes to form one stoke is
necessary for determining the grapheme position within the
PAW (beginning, middle, or end).

PAW stroke construction phase solves this problem by
detecting and concatenating the main strokes which belong
to the same PAW to form one PAW main stroke, while
maintaining the spatial spacing between them that is
important to differentiate some letters from each others like
letter “=~” and “=”. The time duration between strokes
(time stamp), could be of great importance in this phase of
the system. But it’s not available with the ADAB-database
on-line information. Figure 5 shows two main strokes that
should belong to the same PAW, where:

- CD: Concatenation threshold distance.

- MD: Minimum distance between the first and second
strokes.

- P1, P2: The points corresponding to MD.

- P3,P4: The last and first point of the first and second stroke.

- Baseline upper range threshold is double the lower one.

=== First Stroke
=== Sccond Stroke
Baseline

yN \
D
4 /
/
P1,Ps3
Figure 5. Two main strokes with MD<CD

k Baseline
Range

\

P4

The following algorithm iterates on the word main
strokes (without delayed strokes), and concatenates the
same PAW main strokes to form one PAW main stroke:

(A) Every two consecutive strokes where MD<CD are

concatenated, except if one the following 10 conditions is
satisfied:

1- Both P; AND P, are above the baseline range.

2- Both P; AND P, are below the baseline range.

3- (Either P; OR P, is below the baseline range) AND (MD
>30% of CD).

4- (Either P; OR P, is below the baseline range) AND (MD
>80% of CD).

5- Py is not within the first stroke end points (~10% of
points) AND P, is not within the second stroke
beginning points (~10% of points).

6- More than 70% of inter-points angles of the first stroke
OR the second stroke are vertical and up directed
(45°<angle<135°).

7- More than 70% of inter-points angles of the first stroke
OR the second stroke are vertical and down directed
(225°<angle<315°).

8- Both the end of the first stroke AND the beginning of the
second strokes are not horizontal junctions.

9- First stroke vertical minimum point is far below the

baseline range.
10- Second stroke is recognized to be isolated letter “s”.

411

(B) Repeat step A until no concatenation is done for all the
word main strokes.

III. SEGMENTATION

A new segmentation algorithm has been developed that
segments each PAW main stroke into its basic graphemes
(one grapheme at least). Statistics made on handwriting
strokes extracted from samples of the ADAB-database are
used to define the thresholds of the algorithm. The
algorithm is independent of the baseline, so that baseline
errors won’t lead to segmentation errors. Table I shows the
four sets of graphemes classes associated with our
segmentation algorithm (without the delayed strokes).

TABLE L GRAPHEMES CLASSES

| Beginning Middle End Isolated
1. Laam J | LLaamr | | LAlf L | 1anr |
2. Laam_Alif J 2. Kaf-I > 2. Nuun_Tail 2. Laam_Alif)

[3. Kaafl) 3. Nabra - 3.Daal Tail & 3.Raa' J
4. Nabra 2 4. Laam-11 -J_ 4. Laam_Alif J_ 4. Daad S
5. Daal > 5. Nuun/Raa' _J 5. Daal 3 5. Hamza =
6. Nuun J 6. Raa' _, 6.Raa' r 6. Haa' 1)
7.Raa’ J 7.H aa' = 7.Raa' Tail 7. Taa' -
8. Haa' = 8. Kaf-II __c 8. Nabra_Tail (_ 8. Waaw b)
9.Eyn - 9.Eyn —_ 9. Waaw _,' 9. Miim-I —
10. Saad - 10. Faa' - 10. Miim-I B 10. Miim-IT f
11.Faa' -8 | 1l.Mim —p— 11. Saad < | ll.Haa I4
12. Waaw 9 | 12.5.ad _=2. | 12.Haa' <L | 12.Eyn f_
13. Miim - 13.Haa'I _@y_ | 13 Miim-II r°'
14. Haa' D | 4Ha g | 14 Mim Tail [
15. Yaa' S 15. Waaw _9— 15. H aa' a'
16. Kaf-1I S | 16yar Q= | 16Em t
17. Laam_H'aa' .l_.,
18.Miim H'aa' =§
19. Laam_Miim _|

-Red graphemes are considered only for PAWs of two graphemes
- Green graphemes represent the popular ligatures of Arabic according to the ADAB-database
-Blue graphemes are considered only for the before last grapheme of the PAW

The algorithm is summarized in the following steps:

3.1. Arbitrary Segmentation. Let every point that makes a
horizontal angle with its next point (angle less than ~22°
empirically) be called a segmentation point, these points are
shown in Figures 6, 7 and 10 in red. This step is similar to the
first step of a recognition-based segmentation algorithm
discussed in [4].

Points with a Hat Filtration. For every segmentation point
that have above writing (the up vertical line drawn from it,
intersects the writing contour):

3.2.

Not Covered

Covered

Figure 6. Umbrella Filtration Examples, where P, is a rejected
segmentation point and P; is accepted

IF the whole range defined by the angle (90-a)° to (90+a)° is
coverd from above (like P,), THEN this point is rejected from
the group of segmentation points (o is 20° empirically).
Segmentation Junctions. Let each group of consecutive
segmentation points be called a segmentation junction (at
least one point in each junction).
Segmentation Junctions Smoothing.
consecutive segmentation junctions:

IF the number of points between them is less than a pre-
defined threshold (5 points empirically), THEN these points
join the two junctions forming a bigger segmentation
junction. Some examples of smoothed points are shown
circled in Figure 7.

3.3.

3.4. For each two

T’

.
@

Small Group |

Figure 7. Segmentation Junctions and Smoothing

3.5. Small Segmentation Junctions Filteration.

(1) Let every point that makes a vertical to-down angle with its
next point (angle within ~210°330°) be called a down
point, and that makes a vertical to-up angle (angle within
~30°:150° be called up point, and other points be called
netutral points. Figure 8 shows an exmaple of these points.

® Down Point
@Down Centre
Segmintation Junction

3 Up Point
é Up Centre
® Neutral Point
~on z
81 H TSR i i
U L
i & % E4
AL ?3; i ?
H H i
v J \f

Small Segmentation
Junction

Figure 8. Up Points, Down Points and Neutral Points

2
3)

Smoothing the up and down points separatly like step 3.3.
Each group of consecutive up/down points that is
composed of less than Y points (3 points empirically) is
rejected from the up/down points.

Let the centre point of each consecutive group of up/down
points be called up/down centre.

“4)

412

(5) For each small segmentation junction (composed of less
than 5 points empirically):
IF it is preceded by up then down centres (or up within the
stroke’s beginning) and followed by up then down centres,
THEN segmentation junction is accepted.
ELSE segmentation junction is rejected.
3.6. Hill Segmentation Junctions Filtration. Figure 9 shows two
examples of hill junctions circled in green.

.

g

.tv\//

{/

H

3\
QB('\..’//

Figure 9. Hill Junctions

(1) Getting the up and down centres.
(2) For each segmentation junction:
IF it is preceded by up centre and followed by down centre.
THEN segmentation junction is rejected.
3.7. Circular Segmentation Junctions Filteration.
For each segmentation junction Si:
(1) Let Ci=0 and itereate on all the points of Si (Pij):

a- Get Gij; the group of consecutive points after Pij (the
next 150 points empirically).
b- IE Pij have a below writing resulting from Gij,

THEN increment Ci.
(2) IF Ci>70% of Si number of points,
THEN segmentation junction Si is rejected.
ELSE segmentation junction Si is accepted.
Figure 10 shows two examples of Pij, where Si in the right PAW
is rejected, and in the left PAW is accepted.

C; =17
(73.9%)
Reijected

Ci =0
(0%)
Accepted

== PAW Stroke
— Si

Gij

Figure 10. Circled Junctions

3.8. Tail Segmentation Junction Filteration.

IF the last point of the last segmentation junction is within the
end of the stroke (last 6% of stroke points empirically),

THEN this segmentation junction is rejected (which is the
case in Figure 6 last segmentation junction).

Early Junction Filteration. Each small segmentation
junction that have no down centres before it and comes so
early within the stokre is rejected. Figure 10 shows an
example of early segmentation junction circled in green.

3.9.

Figure 11. Early Junction Example

3.10. Final Segmentation Thresholds: The centre points of all the
valid segmentation junctions are the final segmenatation
points that separate the word graphemes.

IV. CHARACTERS CONSTRUCTION

In this phase of the system, characters are being
constructed form the basic graphemes (Table I) and a set of
associated delayed strokes. Experiments with the on-line
system discussed in this paper have proved that delayed
strokes handling and character construction rules are crucial
phases that affect the system performance directly in terms
of recognition rate and time.

Delayed strokes membership to a certain grapheme is
determined according to the grapheme that makes maximum
x-axis histogram overlap with the delayed stroke, after
making a slight horizontal shift to right for all the delayed
strokes, as diacritics in Arabic handwriting are often shifted
to the left of its main grapheme [3]. However the delayed
stroke associated with the Arabic letter “<” is treated
directly according to the nearest grapheme to it.

Characters are decided according to a set of rules that
deal with the sequence of the recognized graphemes,
associated delayed strokes’ types, associated delayed
strokes’ vertical position (above or below the main stroke).

Table II shows some examples of the character

construction rules for the Arabic letters “<”, “&”, and “z”:
TABLE II. CHARACTER CONSTRUCTION RULES EXAMPLES
Character | Graphemes Sequences and Associated Delayed Strokes
a3 Class Beg. 11 & Class Mid. 10 &
1 Dot Up 1 Dot Up
" Class Beg. 11 & Class Beg. 11 & Class Mid. 10 &
S 1 Two-Dots Up 2 Dot Up 1 Two-Dots Up
Class Beg. 8 & Class Mid. 7 & Class Iso. 11 &
€ 1 Dot Down 1 Dot Down 1 Dot Middle
V. RESULTS

We applied the system on the on-line database ADAB of
Tunisian town names. A one-versus-one (OVO) multiclass
fuzzy support vector machines (multiclass fuzzy SVM)
model using RBF kernel was constructed based on the
ADAB-database, using only one on-line feature; direction
feature (cos a(t) and sin a(t)) discussed in [6]. The
number of word PAWSs, delayed strokes formation of each
PAW, and the number of characters of the word are used for
lexicon reduction. While the lexicon is implemented using a
dynamic programming technique called “Minimum Edit
Distance” with equal penalty costs of insertion, deletion and
substitution [7].

413

Table III shows the testing results in each set of the
ADAB-database compared to another on-line recognition
system [3] that is based on graphemes segmentation too. For
our system, in each test, the data of the other two sets is
used for training, while the training graphemes are obtained
by a manual characters segmentation process followed by
automatic graphemes segmentation using the segmentation
technique discussed in this paper.

TABLE III. SYSTEM PERFORMANCE ON ADAB DATABASE
Recognition Rate Recognition Rate
Test Set Our System [3]
Setl 2,3 87 87.1
Set2 1,3 86 1to3 84.79
Set3 1,2 87.6 -
VI. CONCLUSION

We presented in this paper a new complete system for on-
line Arabic handwriting recognition. The main contributions
of this work are the new on-line graphemes segmentation
technique that depends on the local writing direction, and
that our system achieves high recognition rate using a
simple feature extraction and character construction rules.
Recognition errors analysis shows that the contribution of
segmentation errors in system errors is very little compared
to other problems which are almost confined to two main
problems; writing strokes disorder and delayed strokes
drifting.

REFERENCES

B. Alsallakh and H. Safadi, “AraPen: an Arabic online handwriting
recognition system,” in Proc of the 2nd Conf. on Information and
Communication Technologies (ICTTA), vol. 1, pp. 1844-1849 (2006).
A. Al-Shatnawi and K. Omar, “Methods of Arabic language baseline
detection — the state of art,” IJCSNS, vol. 8, no. 10, pp. 137-143
(October 2008).

H. Boubaker, A. Elbaati, M. Kherallah, A.M. Alimi, and H. Elabed,
"Online Arabic Handwriting Modeling System Based on the
Graphemes Segmentation," in Proc. ICPR, pp.2061-2064 (2010).

M. S. Khorsheed, “Off-line Arabic character recognition - a review,”
Pattern Analysis & Apps., vol. 5, pp. 31-45 (2002).

K. Daifallah, N. Zarka, and H. Jamous, “Recognition-based
segmentation algorithm for on-line Arabic handwriting,” in 8th Inter.
Conf. on Document Analysis and Recognition, 2005.

H. El-Abed, M. Kherallah, V. Mirgner and A. M. Alimi, “On-line
Arabic handwriting recognition competition - ADAB database and
participating systems,” International Journal on Document Analysis
and Recognition (2010).

I. Guyon, P. Albrecht, Y. Le Cun, J. Denker and W. Hubbard,
“Design of a Neural Network Character Recognizer for a Touch
Terminal,” Pattern Recognition, vol. 24(2), pp. 105-119 (1991).

M. Pastor, A. Toselli and E. Vidal, “Writing speed normalization for
on-line handwritten text recognition,” in Proc. ICDAR, 2005.

(1]

[2]

[3]

[4]
[5]

(6]

[7]

[8]
[91 M. Pechwitz and V. Maergner, “Baseline estimation for arabic
handwritten words,” in 8th Inter. Workshop on Frontiers in
Handwriting Recognition (IWFHR'02), pp. 479—484 (2002).

